摘要
考虑某些交换子群具有特殊的正规化子,用初等方法证明了循环群和交换群的等价刻画:设G为有限群,则G是循环群当且仅当G的每个极小子群的正规化子皆是循环群;G是交换群当且仅当G的每个初等交换子群的正规化子皆是交换群.
Considering some abelian subgroups with special normalizers,we have proved the following equivalent characterizations of cyclic groups and abelian groups by elementary methods:Let G be a finite group;then G is a cyclic group if and only if the normalizer of every minimal subgroup of G is a cyclic group;G is an abelian group if and only if the normalizer of every elementary abelian subgroup of G is an abelian group.
作者
史江涛
毕凌霄
李娜
SHI Jiang-tao;BI Ling-xiao;LI Na(School of Mathematics and Information Sciences,Yantai University,Yantai 264005,China)
出处
《云南民族大学学报(自然科学版)》
CAS
2019年第6期563-565,共3页
Journal of Yunnan Minzu University:Natural Sciences Edition
基金
国家自然科学基金(11561021
11761079)
山东省自然科学基金(ZR2017MA022)
烟台大学研究生教育创新计划(120202)资助项目
关键词
循环群
交换群
极小子群
初等交换子群
正规化子
cyclic group
abelian group
minimal subgroup
elementary abelian subgroup
normalizer