摘要
针对如何提高轴承故障诊断的准确率和算法训练的效率问题,提出了一种深度信念网络(DBN)与粒子群优化支持向量机(PSO-SVM)的滚动轴承故障诊断方法。首先,求出信号的时频特征统计量,其次,利用DBN对时频特征统计量进行特征提取,最后,利用PSO-SVM进行分类。实验结果表明:相比于直接用PSO-SVM进行分类,该方法不仅准确率更高,而且算法训练的时间大大缩短了,提高了滚动轴承故障诊断的准确率和效率。
As how to improve the accuracy and algorithm efficiency of roll bearing fault diagnosis, a new method of bearing fault diagnosis based on deep belief network(DBN) and the particle swarm optimization support vector machine(PSO-SVM) with the time-frequency characteristic statistic is proposed. Firstly, time-frequency characteristic statistic of the bearing vibration signal is calculated. And then the DBN is used to extract features of time-frequency feature extraction. Finally, the extracted parameters are input to the PSO-SVM to be classified. The experimental results show that this method not only has higher accuracy, but also greatly shorten the training time, and the accuracy and efficiency of fault diagnosis is improved as a result.
作者
熊景鸣
潘林
朱昇
孟宗
Xiong Jingming;Pan Lin;Zhu Sheng;Meng Zong(School of Engineering,Tongren Polytechnic College,Guizhou Tongren 554300,China;School of Electrical Engineering,Yanshan University,Hebei Qinhuangdao 066004,China)
出处
《机械科学与技术》
CSCD
北大核心
2019年第11期1726-1731,共6页
Mechanical Science and Technology for Aerospace Engineering
基金
河北省高等学校科学研究计划重点项目(ZD2015049)
铜仁市科技计划项目(铜市科研[2017]25号)资助
关键词
特征提取
深度信念网络
支持向量机
故障诊断
feature extraction
deep belief networks(DBN)
particle swarm optimization support vector machines(PSO-SVM)
fault diagnosis
roll bearing
experiment