期刊文献+

基于集成学习的2型糖尿病患者降糖药用药方案智能分类探讨 被引量:2

Intelligent classification of hypoglycemia treatment plan for patients with type 2 diabetes based on ensemble learning
下载PDF
导出
摘要 目的探讨集成学习中的Adaboost算法在2型糖尿病患者降糖药用药模式分析中的应用。方法收集解放军总医院第一医学中心2013-2017年的2型糖尿病住院患者病例资料3005例,随机选择1697例为训练集,1308例为测试集,根据医嘱用药、生化检验、基本体征、人口统计学等资料,应用Adaboost算法建立学习模型,对患者用药模式进行分类,并计算模型的准确性和Kappa系数。结果Adaboost模型预测的用药分类准确率为64.2%,Kappa系数为0.36。通过Adaboost模型分析,发现与降糖药用药相关的重要变量有尿肌酐、糖化血红蛋白、肌酸激酶同工酶、空腹血糖等。结论Adaboost算法在降糖药用药方案的预测方面具有较好的效果,集成学习方法在患者用药决策方面具有一定可行性。 Objective To apply Adaboost in the determination of hypoglycemia treatment plan in patients with type 2 diabetes.Methods Clinical data about 3005 patients with type 2 diabetes hospitalized in the first medical center of Chinese PLA General Hospital from 2013 to 2017 were collected,including medical prescriptions,biochemical testing results,clinical manifestations,demographic characteristics,etc.Adaboost algorithm was used to establish the machine learning model and classify the treatment plan of the patients,with 1697 cases as training set and 1308 cases as testing set randomly,and then accuracy and Kappa coefficient of the model were computed.Results The prediction accuracy of the model by Adaboost was 64.2%and the Kappa coefficient was 0.36.After analyzing the model established by Adaboost,we found that UCr,HbA1 c,CK-MB,FBG,etc.were significantly related to the treatment plan selecting.Conclusion To some extent,Adaboost algorithm is feasible and accurate in predicting hypoglycemia treatment plan.
作者 宋亚男 金昕晔 张颖 陈康 应俊 薛万国 母义明 SONG Ya'nan;JIN Xinye;ZHANG Ying;CHEN Kang;YING Jun;XUE Wanguo;MU Yiming('Medical Big Data Center,Chinese PLA General Hospital,Beijing 100853,China;Department of Endocrinology,the First Medical Center,Chinese PLA General Hospital,Beijing 100853,China;Department of Ophthalmology,the First Medical Center,Chinese PLA General Hospital,Beijing 100853,China)
出处 《解放军医学院学报》 CAS 2019年第8期719-724,共6页 Academic Journal of Chinese PLA Medical School
基金 北京市科学技术委员会重大项目(D141107005314004) 解放军总医院医疗大数据研发项目(2017MBD-020)~~
关键词 2型糖尿病 降糖药 ADABOOST算法 多分类学习 type 2 diabetes hypoglycemic drugs Adaboost algorithm mulit-class classification learning
  • 相关文献

参考文献7

二级参考文献19

  • 1陈晓苏,吴振华,肖道举.一种基于签名分段和HMM的离线中文签名验证方法[J].自动化学报,2007,33(2):205-210. 被引量:3
  • 2陆再英,钟南山,主编.内科学[M].第7版.北京:人民卫生出版社,2008:778-779.
  • 3Stratton IM, AdIer AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes(UKPDS 35): prospective obervational study[J]. BMJ,2000,321 ..405-412.
  • 4Khaw KT, Wareham N. Glycated hemoglobin as a marker of cardiovascular risk[J]. Curr Opin Lipidol,2006, 17:637-643.
  • 5Diabetes Control and Complication Trial Research Group: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependentdiabetes meUitus[J]. N Engl J Med, 1993,329:977-986.
  • 6Holman RR, Paul SK, Bethel MA, et M. 10-year follow-up of intensive glucose control in type 2 diabetes[J].N Engl J Med,2 008,359(15): 1577-1589.
  • 7Bailey CJ. Treating insulin resistance in type 2 diabetes with metformin and thiazolidinediones[J].Diabetes Obes Metab, 2005,7:675-691.
  • 8Corretti MC, Anderson TJ, Benjamin EJ, et al. Guidelines for the ultrasound assessment of endothelial-dependent flow- mediated vasodilation of the brachial artery a report of the International Brachial Artery Reactivity Task Force[J].J Am Coll Cardiol, 2002,39: 257-265.
  • 9杨之光,艾海舟.基于聚类的人脸图像检索及相关反馈[J].自动化学报,2008,34(9):1033-1039. 被引量:8
  • 10程豪,黄磊,刘昌平,谭怒涛.基于笔画和Adaboost的两层视频文字定位算法[J].自动化学报,2008,34(10):1312-1318. 被引量:10

共引文献5526

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部