期刊文献+

考虑气水分布的煤层气解吸模型 被引量:2

Desorption model considering gas-water distribution for coalbed methane reservoir
原文传递
导出
摘要 为明确煤储层基质孔隙中液相水对煤岩解吸过程的影响,从煤储层基质特征及热演化过程出发,建立简化的基质串联毛管束模型,并由此获得基质中受液相水影响的孔隙所占的比例,进而通过固—气界面Langmuir吸附理论和固—液界面理论获得不同基质含水条件下的储层解吸模型。计算结果表明液相水的存在会大幅降低煤储层的解吸能力,分析认为这是由于液相水的存在一方面通过影响固—液界面解吸所占比例影响气体解吸量;另一方面通过形成毛管力,圈闭微纳米孔隙中已解吸出的气体。研究成果为完善煤层气解吸开发理论、优化开发技术政策奠定了基础。 In order to clarify the influence of liquid in matrix pore of coal reservoir on desorption process,a capillary bundle model has been established based on matrix characteristics and coalification.From this model,the proportion of pore affected by liquid in matrix is obtained.Then,Langmuir adsorption theory of solid-gas interface and solid-liquid interface theory are used to obtain different water conditions in matrix.The result shows that the existence of liquid water will greatly reduce the desorption capacity of coal reservoir,which is attributed to the existence of liquid water.On one hand,liquid will affect the gas desorption volume by affecting the proportion of solid-liquid interface desorption;on the other hand,liquid will trap the desorbed gas in micro-nano pore by forming capillary force.The research results lay a foundation for perfecting the theory of desorption and development of coalbed methane and optimizing the policy of development technology.
作者 彭泽阳 李相方 孙政 Peng Ze-yang;Li Xiang-fang;Sun Zheng(Key Laboratory for Petroleum Engineering of the Ministry of Education,China University of Petroleum,Beijing 102249,China)
出处 《天然气地球科学》 EI CAS CSCD 北大核心 2019年第10期1415-1421,共7页 Natural Gas Geoscience
基金 国家科技重大专项(编号:2016ZX05042 2017ZX05039) 国家自然科学基金(编号:51504269 51490654)联合资助
关键词 解吸曲线 煤层气 气水分布 毛管力 Desorption curve CBM Distribution of gas and water Capillary force
  • 相关文献

参考文献1

二级参考文献42

  • 1杜晓明,吴二冬.应用吸附势理论研究氢在沸石上的超临界吸附[J].物理化学学报,2007,23(6):813-819. 被引量:11
  • 2Gasparik M, Bertier P, Gensterblum Y, et al. Geological con- trols on the methane storage capacity in organic-rich shales J].International Journal of Coal Geology, 2013,123 (2) : 34- 51.
  • 3Rexer T F T,Benham M J,Aplin A C,et al.Methane adsorp- tion on shale under simulated geological Temperature and pressure conditionsJ]. En orgy Fuels, 2013,27 (6) 3099-3109.
  • 4Ross D J K,Bustin R M.Characterizing the shale gas resource potential of Devonian-Mississippian strata in the Western Canada sedimentary basin.. Application of an integrated for- mation evaluation[J].AAPG Bulletin,2008,92(1) 87-125.
  • 5Rasparik M, Ghanizadeh A, Gensterblum Y, et al. "Multi-tem- perature" method for high-pressure sorption measurements on moist shales[J].Review of Scientific Instruments,2013,84 (8) 1-9.
  • 6Polanyi M. Thepotential theory of adsorption CJ. Science,1963,141(3585):1010-1013.
  • 7Ramirez-Pastor A J, Bulnes F.Differential heat of adsorption in the presence of an order-disorder phase transition[J].Phys- ica A, 2000,283 (1/2) : 198-203.
  • 8近藤精-(日),石川达雄(日),安部郁夫(日).吸附科学[M].北京:化学工业出版社,2006.
  • 9Amankwah K A G,Schwarz J A.A modified approach for es- timating pseudo-vapor pressures in the application of the Du- binin-Astakhov equation[J].Carbon, 1995,33(9) : 1313-1319.
  • 10Dubinin M M.The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces [J].Chemieal Reviews, 1960,60(2) : 235-241.

共引文献2

同被引文献88

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部