期刊文献+

扩散的多播分子通信网络的比特错误率分析

Bit Error Rate Analysis of Diffusion-based Multicast Molecular Communication Networks
下载PDF
导出
摘要 考虑到多播分子通信网络由1个发送方纳米机器、2个接收方纳米机器和4个中继纳米机器组成,提出通过每跳采用同种类型和不同类型的分子来传输信息的中继策略,以保证多播分子通信的可靠性。首先,提出调整阈值的方式来有效减少并行中继纳米机器间发送相同类型分子时的干扰;然后,推导出两种中继策略下多播分子通信网络平均比特错误率的数学表达式;最后,通过实验仿真展示了不同参数(包括检测阈值、每个时隙发送的分子数、发送方和接收方纳米机器间的距离、样本个数、比特间隔时长以及扩散系数)对多播分子通信网络的比特错误率的影响,并提出了可降低该多播分子通信网络的平均比特错误率的中继方案。 Considering a multicast molecular communication network consisting of one transmitter nanomachine,two receiver nanomachines,and four nanomachines acting as relays,this paper proposed two different relay schemes using the same type and different types of molecules in each hop to transmit information to ensure the reliability of the multicast molecular communication.First,the method for adjusting the decision threshold as an effective mechanism is proposed to mitigate interference when transmitting the same type of molecules between parallel relay nanomachines.Then,mathematical expressions for the average bit error rate of the multicast molecular communication network for both relay schemes are derived.Finally,the simulation results show that different parameters have impacts on the average bit error rate of the multicast molecular communication network,including decision threshold,the number of molecules emitted in each time slot,the distance between transmitter nanomachine and receiver nanomachine,the number of samples,bit interval duration and diffusion coefficient.And a relay scheme which can reduce the average bit error rate of this network was proposed.
作者 程珍 赵慧婷 章益铭 林飞 CHENG Zhen;ZHAO Hui-ting;ZHANG Yi-ming;LIN Fei(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China)
出处 《计算机科学》 CSCD 北大核心 2019年第11期80-87,共8页 Computer Science
基金 国家自然科学基金(61472367) 浙江省自然科学基金(LY19F020090)资助
关键词 扩散的 分子通信网络 多播 比特错误率 Diffusive Molecular communication networks Multicast Bit error rate
  • 相关文献

参考文献2

二级参考文献106

  • 1AKYILDIZ I F, BRUNETT F, BLAZQUEZ C. Nanonetworks: a new communication paradigm[J]. Computer Networks Journal, 2008, 52(12): 2260-2279.
  • 2BUSH S F. Nanoscale Communication Networks[M]. Boston: Artech House Press, 2010.
  • 3PIEROBON M, AKYILDIZ I F. A physical end-to-end model for molecular communication in nanonetworks[J]. IEEE Journal on Se- lected Areas in Communications, 2010, 28 (4):602-611.
  • 4GREGORI M. A new nanonetwork architecture using flagellated bacteria and catalytic nanomotors[J]. IEEE Journal on Selected Areas in Com- munications, 2010, 28 (4):612-619.
  • 5ATAKAN B, AKAN O, BALASUBRAMANIAM S. Body area nanonet- works with molectdar communications in nanomedicine[J]. IEEE Commu- nications Magazine, 2012, 50(1):28-34.
  • 6AKYILDIZ I F, JORNET J M. The Intemet of nano-things[J]. Wire- less Communications, 2010, 17(6):58-63.
  • 7L1U J Q. Molecular informatics of nano-communication based on ceils: a brief survey[J]. Nano Communication Networks, 2010, 1(1):118-125. .
  • 8DERYA M. Molecular communication nanonetworks inside human body[J]. Nano Communication Networks, 2012, 3 ( 1 ): 19-35.
  • 9FALKO D, OZGUR B A. A survey on bio-inspired networking[J]. Com- puter Networks, 2010, 54(6):881-900.
  • 10NAKANO T. Biologically inspired network systems: a review and future prospects[J]. IEEE Transactions on Systems, Man, and Cybernet- ics, 2011, 41(5):630-643.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部