期刊文献+

一种视频监控中基于航迹的运动小目标检测算法 被引量:10

A Small Moving Object Detection Algorithm Based on Track in Video Surveillance
下载PDF
导出
摘要 针对视频监控中运动小目标难以检测的问题,该文提出一种基于航迹的检测算法。首先,为了降低检测漏警率,提出区域纹理特征与差值概率融合的自适应前景提取方法;其次,为了降低检测虚警率,设计航迹关联的概率计算模型以建立疑似目标在视频帧间的关联,并设置双门限以区分疑似目标中的真实目标与虚假目标。实验结果表明,与多种经典算法相比,该算法能对定量范围内的运动小目标以更低的漏警率和虚警率实施准确检测。 To solve the problem that small moving object is difficult to be detected in video surveillance,a track-based detection algorithm is proposed.Firstly,in order to reduce missing alarm,an adaptive foreground extraction method combining regional texture features and difference probability is presented.Then,for reducing false alarm,the probability computing model of track correlation is designed to establish the correlation of suspected objects between frames,and double-threshold are set to distinguish between true and false positive.Experimental results show that compared with many classical algorithms,this algorithm can accurately detect small moving object within the quantitative range with lower missing and false alarm.
作者 孙怡峰 吴疆 黄严严 汤光明 SUN Yifeng;WU Jiang;HUANG Yanyan;TANG Guangming(Information Engineering University,PLA Strategic Support Force,Zhengzhou 450000,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2019年第11期2744-2751,共8页 Journal of Electronics & Information Technology
关键词 运动目标检测 小目标检测 航迹关联 Moving object detection Small object detection Track correlation
  • 相关文献

参考文献4

二级参考文献32

  • 1PORAT B, FRIENDLANDER B. A frequency domain algorithm for multi-frame detection and estimation of dim targets[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(4):398-401.
  • 2BAI X Z, ZHOU F G. Analysis of new top-hat transformation and the application for infrared dim small target detection[J]. Pattern Recognition, 2010, 43(6):2145-2156.
  • 3POHLIG S C. Spatial-temporal detection of electro-optic moving targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31 (2):608-616.
  • 4YANG L, YANG J, YANG K. Adaptive detection for infrared small target under sea-sky complex background[J]. Electronics Letters, 2004, 40( 17): 1083-1085.
  • 5DENG H, LIU J G. Infrared small target detection based on the self-information map[J]. Infrared Physics & Technology, 2011, 54(2): 100-107.
  • 6HUANG K, MAO X. Detectability of infrared small targets[J]. Infrared Physics & Technology, 2010, 53(3):208-217.
  • 7ZHANG Y J. A survey on evaluation methods for image segmentation[J]. Pattern Recognition. 1996, 29(8): 1335-1346.
  • 8DENG H. LIU Q T, CHENG L E Local reverse entropy and its application in small targets detection[J]. Energy Procedia, 2011, 13: 1956-1963.
  • 9NAKAGAWA Y, ROSENFELD A. Some experiments on variable thresholding[J]. Pattern Recognition, 1979. 11 (2): 191-204.
  • 10XU J. ZHANG J Q, LIANG C H. Prediction of the performance of an algorithm for the detection of small targets in infrared images[J]. Infrared Physics & Technology, 2001, 42(1): 17-22.

共引文献15

同被引文献105

引证文献10

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部