期刊文献+

Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region 被引量:3

Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region
下载PDF
导出
摘要 Low-rise buildings are susceptible to high-frequency ground motion.The high-frequency ground motions at regional distances are mainly controlled by crustal Lg waves whose amplitudes are typically much larger than those of body waves.In this study,we develop a Lg-wave Q model for the Sichuan and Yunnan region in the frequency band of 0.3–2.0 Hz using regional seismic records of 1166 earthquakes recorded at 152 stations.Comparison between the observed pattern of ground motion from real earthquake and model prediction demonstrates the robustness and effectiveness of our Lg-Q model.Then,assuming that the Lg-wave Q structure is the main factor affecting the propagation of the high-frequency ground motions,we calculate the spatial distributions of high-frequency ground motions from scenario earthquakes at different locations in the region using the average Lg-wave attenuation model over the frequency band of 0.3–2.0 Hz.We also use the Lg-Q model to estimate the distribution of cumulative energy of high-frequency ground motions based on the historical seismicity of the Sichuan and Yunnan region.Results show that the Lg-Q model can be used effectively in estimating the spatial distribution of high-frequency seismic energies and thus can contribute to the assessment of seismic hazard to low-rise buildings. Low-rise buildings are susceptible to high-frequency ground motion. The high-frequency ground motions at regional distances are mainly controlled by crustal Lg waves whose amplitudes are typically much larger than those of body waves. In this study, we develop a Lg-wave Q model for the Sichuan and Yunnan region in the frequency band of 0.3–2.0 Hz using regional seismic records of 1166 earthquakes recorded at 152 stations. Comparison between the observed pattern of ground motion from real earthquake and model prediction demonstrates the robustness and effectiveness of our Lg-Q model. Then, assuming that the Lg-wave Q structure is the main factor affecting the propagation of the high-frequency ground motions, we calculate the spatial distributions of high-frequency ground motions from scenario earthquakes at different locations in the region using the average Lg-wave attenuation model over the frequency band of 0.3–2.0 Hz. We also use the Lg-Q model to estimate the distribution of cumulative energy of high-frequency ground motions based on the historical seismicity of the Sichuan and Yunnan region. Results show that the Lg-Q model can be used effectively in estimating the spatial distribution of high-frequency seismic energies and thus can contribute to the assessment of seismic hazard to low-rise buildings.
作者 Zhi Wei Li Zhao
出处 《Earth and Planetary Physics》 CSCD 2019年第6期526-536,共11页 地球与行星物理(英文版)
基金 supported by the China Postdoctoral Science Foundation
关键词 Lg-wave attenuation MODEL HIGH-FREQUENCY ground motions seismic hazards LOW-RISE buildings Lg-wave attenuation model high-frequency ground motions seismic hazards low-rise buildings
  • 相关文献

参考文献11

二级参考文献124

共引文献458

同被引文献53

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部