摘要
针对TFF1dCNN方法利用一维CNN分别对各心音片段的4个频带信号提取特征,可能无法充分提取各频带信号间相关信息的问题,提出TFF2dCNN方法。先将4个频带信号融合成二维信号;再由二维CNN进行特征提取和分类。实验结果表明,该方法提升了分类正确率。此外,还分析了心音样本的分类正确率与其包含的心动周期数的关系。
The TFF1dCNN method uses one-dimensional CNN to extract the features of four frequency bands signal of each heart sound segment,and there is a problem that the relevant information between each frequency band may not be fully extracted.This paper proposes the TFF2dCNN method.The four frequency bands signal are firstly combined into a two-dimensional signal,and then the features extraction and classification are carried out by two-dimensional CNN.Experimental results show that the proposed method improves the classification accuracy.In addition,this paper also analyzes the relationship between the classification accuracy of heart sound and the number of cardiac cycles it contains.
作者
韩威
李昌
刘厶元
刘伟鑫
邱泽帆
Han Wei;Li Chang;Liu Siyuan;Liu Weixin;Qiu Zefan(Guangdong University of Technology;Guangdong Institute of Intelligent Manufacturing,Guangdong Key Laboratory of Modern Control Technology)
出处
《自动化与信息工程》
2019年第5期13-16,36,共5页
Automation & Information Engineering
基金
国家自然科学基金项目(61803107)
广州市科技计划项目(201803020025,201906010036)
广东省科学院人才项目(2019GDASYL-0105069)
关键词
心音分类
心音特征融合
CNN
Heart Sound Classification
Heart Sound Features Fusion
Convolutional Neural Network