期刊文献+

基于CNN的心音特征融合分类方法 被引量:3

Classification Method of Heart Sound Feature Fusion Based on CNN
下载PDF
导出
摘要 针对TFF1dCNN方法利用一维CNN分别对各心音片段的4个频带信号提取特征,可能无法充分提取各频带信号间相关信息的问题,提出TFF2dCNN方法。先将4个频带信号融合成二维信号;再由二维CNN进行特征提取和分类。实验结果表明,该方法提升了分类正确率。此外,还分析了心音样本的分类正确率与其包含的心动周期数的关系。 The TFF1dCNN method uses one-dimensional CNN to extract the features of four frequency bands signal of each heart sound segment,and there is a problem that the relevant information between each frequency band may not be fully extracted.This paper proposes the TFF2dCNN method.The four frequency bands signal are firstly combined into a two-dimensional signal,and then the features extraction and classification are carried out by two-dimensional CNN.Experimental results show that the proposed method improves the classification accuracy.In addition,this paper also analyzes the relationship between the classification accuracy of heart sound and the number of cardiac cycles it contains.
作者 韩威 李昌 刘厶元 刘伟鑫 邱泽帆 Han Wei;Li Chang;Liu Siyuan;Liu Weixin;Qiu Zefan(Guangdong University of Technology;Guangdong Institute of Intelligent Manufacturing,Guangdong Key Laboratory of Modern Control Technology)
出处 《自动化与信息工程》 2019年第5期13-16,36,共5页 Automation & Information Engineering
基金 国家自然科学基金项目(61803107) 广州市科技计划项目(201803020025,201906010036) 广东省科学院人才项目(2019GDASYL-0105069)
关键词 心音分类 心音特征融合 CNN Heart Sound Classification Heart Sound Features Fusion Convolutional Neural Network
  • 相关文献

参考文献1

二级参考文献3

共引文献4

同被引文献10

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部