期刊文献+

基于机器视觉的老年人摔倒检测系统 被引量:6

Fall Detection System for the Elderly Based on Machine Vision
下载PDF
导出
摘要 家庭陪护机器人可以实现老年人的陪护任务,其中主动检测老年人摔倒情况是一个重要功能,这可以减少独居老年人因摔倒而导致的伤亡。研究基于机器视觉的老年人摔倒检测系统,通过摄像机动态采集场景图像并跟踪场景中的老年人,结合其体姿态特征提取算法,对人体骨骼特征点变化量进行监测,并分析场景的语义信息,自主地对场景中的老年人进行摔倒检测。实验证明,本文提出检测系统是可行有效的。 With the continuous development of economy and the improvement of medical conditions,the birth population is decreasing year by year and the degree of population aging is deepening.The pressure of social pension is great.Facing the lack of pension institutions,home-based pension will be an important trend.Home care robot can achieve the task of care for the elderly,in which it is an important function to actively detect the elderly fall and other abnormal conditions,which can reduce the casualties caused by the fall of the elderly living alone.This paper studies the fall detection system of the elderly based on machine vision,which dynamically tracks the people in the scene through the camera,and combines the human body posture feature extraction algorithm to monitor the changes of human skeleton feature points,and analyzes the semantic information of the scene,and autonomously detects the fall abnormalities of the people in the scene.Experiments show that the proposed method is effective.
作者 陈永彬 何汉武 王国桢 王桂棠 Chen Yongbin;He Hanwu;Wang Guozhen;Wang Guitang(Guangdong University of Technology;Beijing Normal University-HongKong Baptist University United International College)
出处 《自动化与信息工程》 2019年第5期37-41,共5页 Automation & Information Engineering
关键词 机器视觉 动态跟踪 摔倒检测 语义信息 Machine Vision Dynamic Tracking Fall Detection Semantic Information
  • 相关文献

参考文献3

二级参考文献33

  • 1黄天雯,罗晓梅,黄欢雪,江美霞.老年人跌倒的危险因素及干预措施[J].现代临床护理,2004,3(1):56-58. 被引量:34
  • 2吴沁芬.老年人防跌意识的社区健康教育[J].中国老年保健医学,2007,5(6). 被引量:2
  • 3梁万年,刘迎,瓮学清,王玉春,王世萍,周晓萍,李荣,李葳,赵焕香.北京市牛街社区老年人群伤害发生现状研究[J].疾病控制杂志,2004,8(6):489-492. 被引量:18
  • 4苏海丹,黄春燕,成翠珍,温梦玲.对老年患者防跌倒的认知行为干预[J].中国实用护理杂志(中旬版),2006,22(2):6-7. 被引量:47
  • 5李辉,张涛.社区老年人跌倒的预防与控制[J].江苏预防医学,2007,18(4):82-84. 被引量:24
  • 6HASSAN W, MITRA B, CHATWIN C, et al. Illumi- nation invariant method to detect and track left luggage in public areas [C]// International Society for Optleal Engineering. Brussels: SPIE, 2010.
  • 7FERRYMAN K, HOGG J, SOCHMAN D, et al. Ro- bust abandoned object detection integrating wide area visual surveillance and social context [J]. Pattern Recog- nition Letters, 2013, 34 (7) : 789 - 798 .
  • 8PORIKLI F, IVANOV Y, HAGA T. Robust aban- doned object detection using dual foregrounds [J]. EURASIP Journal on Advances in Signal Process, 2008 (30): 1-10.
  • 9XU Li-li, ZHANG Cbao, ZHANG Duo. Abandoned ob- jects detection using double illumination invariant fore- ground masks [C]//International Conference on Pattern Recognition. Istanbul: IEEE, 2010: 436- 439.
  • 10TIAN Ying-li, FERIS RS, LIU Hao-wei, et al. Robust detection of abandoned and removed objects in complex surveillance videos [J]. IEEE Transactions on Systems, Man, and Cybernetics, 2011(9): 565-576.

共引文献23

同被引文献49

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部