摘要
研究了一类离散分数阶神经网络的Mittag-Leffler稳定性问题.首先,基于离散分数阶微积分理论、神经网络理论,提出了一类离散分数阶神经网络.其次,利用不等式技巧和离散Laplace变换,通过构造合适的Lyapunov函数,得到了离散分数阶神经网络全局Mittag-Leffler稳定的充分性判据.最后,通过一个数值仿真算例验证了所提出理论的有效性.
The Mittag-Leffler stability of a class of discrete-time fractional-order neural networks was studied.Based on the discrete fractional calculus theory and the neural network theory,a class of discrete-time fractional-order neural networks were proposed.By means of the inequality techniques and the discrete Laplace transform,and through construction of the appropriate Lyapunov function,the sufficient criteria for global Mittag-Leffler stability of discrete-time fractional-order neural networks were obtained.Finally,a numerical simulation example verifies the validity of the proposed theory.
作者
游星星
梁伦海
YOU Xingxing;LIANG Lunhai(School of Economics and Management,Chongqing Jiaotong University,Chongqing 400074,P.R.China)
出处
《应用数学和力学》
CSCD
北大核心
2019年第11期1224-1234,共11页
Applied Mathematics and Mechanics
基金
重庆市研究生教育创新基金(CYS18230)