期刊文献+

离散分数阶神经网络的全局Mittag-Leffler稳定性 被引量:2

Global Mittag-Leffler Stability of Discrete-Time Fractional-Order Neural Networks
下载PDF
导出
摘要 研究了一类离散分数阶神经网络的Mittag-Leffler稳定性问题.首先,基于离散分数阶微积分理论、神经网络理论,提出了一类离散分数阶神经网络.其次,利用不等式技巧和离散Laplace变换,通过构造合适的Lyapunov函数,得到了离散分数阶神经网络全局Mittag-Leffler稳定的充分性判据.最后,通过一个数值仿真算例验证了所提出理论的有效性. The Mittag-Leffler stability of a class of discrete-time fractional-order neural networks was studied.Based on the discrete fractional calculus theory and the neural network theory,a class of discrete-time fractional-order neural networks were proposed.By means of the inequality techniques and the discrete Laplace transform,and through construction of the appropriate Lyapunov function,the sufficient criteria for global Mittag-Leffler stability of discrete-time fractional-order neural networks were obtained.Finally,a numerical simulation example verifies the validity of the proposed theory.
作者 游星星 梁伦海 YOU Xingxing;LIANG Lunhai(School of Economics and Management,Chongqing Jiaotong University,Chongqing 400074,P.R.China)
出处 《应用数学和力学》 CSCD 北大核心 2019年第11期1224-1234,共11页 Applied Mathematics and Mechanics
基金 重庆市研究生教育创新基金(CYS18230)
关键词 全局Mittag-Leffler稳定性 分数阶神经网络 离散时间 LYAPUNOV函数 global Mittag-Leffler stability fractional-order neural network discrete time Lyapunov function
  • 相关文献

参考文献4

二级参考文献17

  • 1Hopfield J J,Tank D W.Neural computation of decision in op optimization problem[J].Biol Cybern,1985,52(1):141-152.
  • 2Tank D W,Hopfield J J.Simple ‘ neural’ optimization networks:an A/D converter,signal decision circuit,and a linear programming circuit[J].IEEE Trans Circuits Syst (Ⅰ),1988,35(5):554-562.
  • 3Bouzerdoum A,Pattison T R.Neural network for quadratic optimization with bound constraints[J].IEEE Transactions on Neural Networks,1993,4(2):293-303.
  • 4Perez-Ilzarbe M J.Convergence analysis of a discrete-time recurrent neural network to perform quadratic real optimization with bound constraints[J].IEEE Transactions on Neural Networks,1998,9(6):1344-1351.
  • 5Liang X B,Wang J.A recurrent neural network for nonlinear optimization with a continuosly differentiable objective function and bound constraints[J].IEEE Transactions on Neural Networks,2000,11 (6):1251-1262.
  • 6XIA You-shen,Leung Henry,WANG Jun.A projection neural network and its application to constrained optimization problems[J].IEEE Trans Circuits Syst (Ⅰ),2002,49(4):447-458.
  • 7XIA You-shen,WANG Jun.A recurrent neural network for solving linear projection equations[J].Neural Netvorks,2000,13 (3):337-350.
  • 8Liang X B.A recurrent neural network for nonlinear continuously differentiable optimization over a compact convex subset[J].IEEE Transactions on Neural Networks,2001,12(6):1487-1490.
  • 9Liang X B.Qualitative analysis of a recurrent neural network for nonlinear continuously differentiable convex minimization over a nonempty closed convex subset[J].IEEE Transactions on Neural Networks,2001,12(6):1521-1525.
  • 10Kinderlehrer D,Stampcchia G.An Introduction to Variational Inequalities and Their Applications[M].New York:Academic,1980.

共引文献63

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部