摘要
研究了具有泄漏时滞、加性离散时变时滞、加性分布时变时滞复数神经网络的状态估计问题.在复数神经网络不分解条件下,通过构造合适的Lyapunov-Krasovskii泛函,并应用自由权矩阵、矩阵不等式和倒数凸组合法等方法,通过可观测的输出测量来估计神经元状态,给出了判断误差状态模型全局渐近稳定的与时滞相关的复数线性矩阵不等式.最后,通过一个数值仿真算例验证了理论分析的有效性.
The state estimation of complex-valued neural networks with leakage delay and both discrete and distributed additive time-varying delays was studied.In the case where the activation function of the network was not required to be separated,through construction of the appropriate Lyapunov-Krasovskii functionals,and with the free weight matrix,the matrix inequality and the reciprocal convex combination method,the state of the neuron was estimated by means of observable output measurements.In addition,complex-valued linear matrix inequalities related to time delays were given to ensure the global asymptotic stability of the error-state model.Finally,numerical simulation examples verify the validity of the theoretical analysis.
作者
刘丽缤
潘和平
LIU Libin;PAN Heping(School of Finance,Chongqing Technology and Business University,Chongqing 400067,P.R.China;Institute of Advanced Studies and Business School,Chengdu University,Chengdu 610106,P.R.China)
出处
《应用数学和力学》
CSCD
北大核心
2019年第11期1246-1258,共13页
Applied Mathematics and Mechanics
基金
国家社会科学基金(17BGL231)~~
关键词
泄漏时滞
加性时变时滞
复数神经网络
线性矩阵不等式
状态估计
leakage delay
additive time-varying delay
complex-valued neural network
linear matrix inequality
state estimation