期刊文献+

面向电力工控网络大数据的微聚集差分隐私保护方法 被引量:10

Micro-aggregation for differential privacy protection method based on big data of power control network
下载PDF
导出
摘要 针对隐私泄露问题,该文提出一种在频繁模式挖掘中依托微聚集算法实现的差分隐私保护方法,并将其应用到电力工控网络中。通过对指数机制和每个模式的微聚集权重的权衡,选择了Top-k频繁模式方法,并加入拉普拉斯噪声进行扰动,使每个被选择模式的原始支持度均实现了隐私保护与效用的平衡,最大程度地确保了信息发布、数据分析需求和隐私保护需求的平衡,保障了各方对电力工控系统的信任和电力工控系统的健康成长,在数据集上的实验结果验证了该方法的有效性。 In order to solve the problem of privacy disclosure of network,the differential privacy protection in frequent pattern mining is implemented based on the micro-aggregation algorithm for the power industrial control network to ensure the balance among information release,data analysis requirements and privacy protection demands by weighting the exponential mechanism and the micro-aggregation weight of each mode.By adding the Laplace noise disturbance,the Top-k frequent pattern method is selected and the original support each of the selected mode achieves a balance between privacy and utility.The method in this paper can guarantee the trust of all parties in the power industrial control system and the healthy growth of power industrial control system.The experimental results on the dataset verify the effectiveness of the method.
作者 程伟华 谭晶 徐明生 倪震 Cheng Weihua;Tan Jing;Xu Mingsheng;Ni Zhen(Jiangsu Electric Power Information Technology Co Ltd,Nanjing 210024,China;School of Information Engineering,Nanjing Xiaozhuang University,Nanjing 211171,China)
出处 《南京理工大学学报》 EI CAS CSCD 北大核心 2019年第5期571-577,共7页 Journal of Nanjing University of Science and Technology
关键词 微聚集 匿名化 频繁模式挖掘 差分隐私保护 micro-aggregation anonymization frequent pattern mining differential privacy protection
  • 相关文献

参考文献7

二级参考文献51

  • 1彭京,唐常杰,程温泉,石葆梅,乔少杰.一种基于层次距离计算的聚类算法[J].计算机学报,2007,30(5):786-795. 被引量:11
  • 2Saygin Y,Verykios V S,Elmagarmid A K.Privacy preserving association rule mining[A].Proceedings of the 12th International Workshop on Research Issues in Data Engineering(RIDE)[C].San Jose,USA:IEEE Computer Society,2002.151-158.
  • 3Aggarwal C C,Yu P S.A condensation approach to privacy preserving data mining[A].Proceedings of the 9th International Conference on Extending Database Technology(EDBT)[C].Heraklion,Greece:Springer,2004.183-199.
  • 4Yao A C.How to generate and exchange secrets[A].Proceedings of the 27th IEEE Symposium on Foundations of Computer Science(FOCS)[C].Toronto,Canada:IEEE Press,1986.162-167.
  • 5Clifton C,Kantarcioglou M,Lin X,Zhu M Y.Tools for privacy preserving distributed data mining[J].ACM SIGKDD Explorations,2002,4(2):28-34.
  • 6Laszlo M,Mukherjee S.Minimum spanning tree partitioning algorithm for microaggregation[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(7):902-911.
  • 7Solanas A,Martinez-Balleste A,Domingo-Ferrer J,et al.A 2d-tree-based blocking method for microaggregating very large data sets[A].Proc of the First International Conference on Availability,Reliability and Security[C].Vienna,Australia:IEEE Press,2006.922-928.
  • 8Domingo-Ferrer J.Microaggregation for database and location privacy[A].Proc of Next Generation Information Technologies and Systems[C].Kibbutz,Shefayim,Israel:Springer-Verlag,2006.106-116.
  • 9Truta T,Vinay B.Privacy protection:p-sensitive k-anonymity property[A].Proc of the 22nd International Conference on Data Engineering Work Shops[C].Washington DC,USA:IEEE Computer Society,2006.94-103.
  • 10Sweeney L.k-anonymity:A model for protecting privacy[J].International Journal on Uncertainty,Fuzziness and Knowledge-Based Systems,2002,10(5):557-570.

共引文献310

同被引文献114

引证文献10

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部