期刊文献+

求解非线性方程组的一种三项共轭梯度法 被引量:3

A three-terms conjugate gradient algorithm for solving nonlinear equations
下载PDF
导出
摘要 基于共轭梯度算法的简洁性和高效性,本文提出求解大规模非线性方程组模型的一种修正三项共轭梯度算法。算法具有充分下降性、信赖域性质和全局收敛性。数值结果表明新算法比类似算法更具竞争力。 By virtue of the conjugate gradient algorithm s simplicity and high efficiency,a modified three-terms conjugate gradient algorithm was proposed to solve large scale nonlinear equations.It has a sufficiently descent property,a trust region character and the global convergence.The numerical results show that the proposed algorithm is superior than similar algorithms.
作者 胡午杰 袁功林 HU Wu-jie;YUAN Gong-lin(College of Mathematics and Information Science,Guangxi University,Nanning 530004,China)
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2019年第5期1485-1490,共6页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(11661009) 广西研究生教育创新计划项目(YCSW2018046) 广西杰出青年科学基金(2015GXNSFGA139001) 广西自然科学重点基金(2017GXNSFDA198046)
关键词 非线性方程组 三项共轭梯度 下降性 全局收敛性 nonlinear equations three-terms conjugate gradient descent property global convergence
  • 相关文献

参考文献2

二级参考文献19

  • 1韦增欣,谢品杰.修改Broyden族在一类非精确线搜索下的全局收敛性[J].广西科学,2006,13(1):12-16. 被引量:2
  • 2ZHU D. Nonmonotone backtracking inexact quasi-Newton algorithms for solving smooth nonlinear equations [ J ]. AppliedMathematics and Computation, 2005, 161(3) : 875-895.
  • 3LI D, FUKUSHIMA M. A global and superlinear convergent Gauss-Newton-based BFGS method for symmetric nonlinear e-quations[J]. SIAM J. Numer. Anal. 1999,37; 152-172.
  • 4GU G Z, LI D H, QI L,et al. Descent directions of quasi-Newton methods for symmetric nonlinear equations[ J]. SIAMJournal on Numerical Analysis, 2002,40(5 ) : 1763-1774.
  • 5YUAN G,LU X. A new backtracking inexact BFGS method for symmetric nonlinear equations[ J]. Computers & Mathe-matics with Applications, 2008, 55(1) : 116-129.
  • 6NASH S G. A survey of truncated-Newton methods [ J ]. Journal of Computational and Applied Mathematics,2000,124(1) : 45-59.
  • 7BROWN P N,SAAD Y. Convergence theory of nonlinear Newton-Krylov algorithms [ J]. SIAM Journal on Optimization,1994, 4(2) : 297-330.
  • 8LI Q, LI D H. A class of derivative-free methods for large-scale nonlinear monotone equations[ J]. IMA journal of numeri-cal analysis, 2011,31(4) : 1625-1635.
  • 9YU Z, LIN J,SUN J,et al. Spectral gradient projection method for monotone nonlinear equations with convex constraints[J]. Applied numerical mathematics, 2009,59( 10) : 2416-2423.
  • 10LI X, WANG X,DUAN X. A Limited memory bfgs method for solving large-scale symmetric nonlinear equations [ C ] //Abstract and Applied Analysis. London : Hindawi Publishing Corporation, 2014.

共引文献3

同被引文献21

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部