期刊文献+

关于Toeplitz-Hessenberg矩阵的逆和行列式计算

The Inverse and Determinant Calculation on Toeplitz-Hessenberg Matrix
下载PDF
导出
摘要 研究了Toeplitz-Hessenberg矩阵的可逆性,并且得到它的逆是一个下三角矩阵L和一个秩1矩阵R的和.利用此结果,推导出了L和满足xy^T=R的向量x,y的公式.此外,从逆的表达式获得了其行列式的计算公式. In this paper, the reversibility of the Toeplitz-Hessenberg matrix is studied, and its inverse is the sum of a lower triangular matrix L and a rank 1 matrix R. Using this result, the formula of L and the vector x, y satisfying xy^T=R is derived. In addition, the formula of the determinant that Toeplitz-Hessenberg matrixis obtained from the inverse expression.
作者 郑振 邓勇 Zheng Zhen;Deng Yong(College of Mathematics and Statistics,Kashi University,Kashi,Xinjiang 844006,China)
出处 《伊犁师范学院学报(自然科学版)》 2019年第3期5-8,共4页 Journal of Yili Normal University:Natural Science Edition
关键词 HESSENBERG矩阵 TOEPLITZ矩阵 矩阵的逆 行列式 Hessenberg matrix Toeplitz matrix matrix inverse determinant
  • 相关文献

参考文献4

二级参考文献20

  • 1陈芳,徐仲,陆全.分块带状矩阵的逆[J].高等学校计算数学学报,2006,28(3):209-215. 被引量:1
  • 2El-Mikkawy M E A. On the inverse of a general tridiagonal matrix[J].Applied Mathematics and Computation, 2004,150(3) : 669-679.
  • 3Ranjan K M. The inverse of a tridiagonal matrix[J].Linear Algebra and Its Applications,2001,325(1/3):109-139.
  • 4Meurant G. A review on the inverse of symmetric tridiagonal and block tridiagonal matrices[J]. SIAM Journal on Matrix Analysis and Applications, 1992,13(3) : 707-728.
  • 5Nabben R. Decay rates of the inverse of nonsymmetric tridiagonal and band matrix[ J]. SIAM Journal an Matrix Analysis and Applications, 1999,20(3):820-837.
  • 6El-Mikkawy M E A. An algorithm for solving tridiagonal systems[J].Journal of Institute of Mathematics and Computer Sciences, 1991,4(2) :205-210.
  • 7Burden R L, Faives J D. Numerical Anaiysis, 7Th Edition. Books Cole Publishing, Pracific Grove, CA, 2001.
  • 8E1-Mikkawy M E A. A neW computational algoriehm for solving periodic tri-diagonal linear systems. Appl. Math. Comput., 2005, 16h 691-696.
  • 9Karawia A A. A computational algoriehm for solving periodic penta-diagonal linear sys- tems. Appl. Math. Comput., 2006, 174: 613-618.
  • 10Sogabe T. New algoriehms for solving periodic tridiagonal and periodic pentadiagonal linear systems. Appl. Math. Comput. 2008, 202: 850-856.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部