摘要
研究了Toeplitz-Hessenberg矩阵的可逆性,并且得到它的逆是一个下三角矩阵L和一个秩1矩阵R的和.利用此结果,推导出了L和满足xy^T=R的向量x,y的公式.此外,从逆的表达式获得了其行列式的计算公式.
In this paper, the reversibility of the Toeplitz-Hessenberg matrix is studied, and its inverse is the sum of a lower triangular matrix L and a rank 1 matrix R. Using this result, the formula of L and the vector x, y satisfying xy^T=R is derived. In addition, the formula of the determinant that Toeplitz-Hessenberg matrixis obtained from the inverse expression.
作者
郑振
邓勇
Zheng Zhen;Deng Yong(College of Mathematics and Statistics,Kashi University,Kashi,Xinjiang 844006,China)
出处
《伊犁师范学院学报(自然科学版)》
2019年第3期5-8,共4页
Journal of Yili Normal University:Natural Science Edition