摘要
针对溶解氧控制过程中存在的时滞性给PID参数的整定带来困难,导致溶解氧浓度波动较大,控制效果较差的问题,将传统共轭梯度法与PSO算法结合,运用基于共轭梯度的PSO算法对PID控制器的参数进行优化,克服了PSO算法的早熟问题. MATLAB仿真结果表明:与传统PID控制和基于标准PSO算法的PID控制作对比,共轭梯度优化算法(GCM)和PSO算法的结合所得的PID控制参数使得闭环系统得到了较好的动态响应,控制效果得到了改善.
Due to the time-delay in the process of dissolved oxygen control, the tuning of PID parameters is difficult. which leads to the fluctuation of dissolved oxygen concentration and the poor control effect. The traditional conjugate gradient method is combined with the PSO algorithm. The conjugate gradient PSO algorithm optimizes the parameters of the PID controller and overcomes the premature problem of the PSO algorithm. The simulation results of MATLAB show that: compared with traditional PID control and PID control based on standard PSO algorithm, the PID control parameters obtained by the combination of conjugate gradient optimization algorithm(GCM) and PSO algorithm make the closed-loop system get better dynamic response and the control effect is improved.
作者
李艳
魏飞
Li Yan;Wei fei(College of Electrical and Information Engineering Shanxi University of Science&Technology,Xi’an,Shaanxi 710021,China;Shaanxi Agricultural Flat Processing Technology Research Institute,Xi’an,Shaanxi 710021,China)
出处
《伊犁师范学院学报(自然科学版)》
2019年第3期44-51,共8页
Journal of Yili Normal University:Natural Science Edition
基金
陕西省科技计划项目(2018GY-042)
关键词
溶解氧
共轭梯度法
粒子群算法
参数优化
dissolved oxygen
conjugate gradientmethod
particle swarmoptimization
parameter optimization