期刊文献+

A Neural-network-based Approach to Study the Energy-optimal Hovering Wing Kinematics of a Bionic Hawkmoth Model 被引量:2

原文传递
导出
摘要 This paper presents the application of an artificial neural network to develop an approach to determine and study the energy-optimal wing kinematics of a hovering bionic hawkmoth model.A three-layered artificial neural network is used for the rapid prediction of the unsteady aerodynamic force acting on the wings and the required power.When this artificial network is integrated into genetic and simplex algorithms,the running time of the optimization process is reduced considerably.The validity of this new approach is confirmed in a comparison with a conventional method using an aerodynamic model based on an extended unsteady vortex-lattice method for a sinu soidal wing kinematics problem.When studying the obtained results,it is found that actual hawkmoths do not hover under an energy-optimal condition.Instead,by tilting the stroke plane and lowering the wing positions,they can compromise and expend some energy to enhance their maneuverability and the stability of their flight.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2019年第5期904-915,共12页 仿生工程学报(英文版)
  • 相关文献

参考文献1

共引文献5

同被引文献3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部