期刊文献+

图像反问题中的数学与深度学习方法 被引量:2

MATHEMATICAL AND DEEP LEARNING METHODS IN IMAGE INVERSE PROBLEMS
原文传递
导出
摘要 我们生活在数字的时代,数据已经成为了我们生活中不可或缺的一部分,而图像无疑是最重要的数据类型之一.图像反问题,包括图像降噪,去模糊,修复,生物医学成像等,是图像科学中的重要领域.计算机技术的飞速发展使得我们可以用精细的数学和机器学习工具来为图像反问题设计有效的解决方案.本文主要回顾图像反问题中的三大类方法,即以小波(框架)为代表的计算调和分析法、偏微分方程(PDE)方法和深度学习方法.我们将回顾这些方法的建模思想和一些具体数学形式,探讨它们之间的联系与区别,优点与缺点,探讨将这些方法有机融合的可行性与优势. We live in the digital age,and data has become an essential part of our lives.Images are undoubtedly one of the most important types of data.Image inverse problems,including image denoising,deblurring,restoration,biomedical imaging,etc.,are important areas in imaging science.The rapid development of computer technology has enabled us to use sophisticated mathematics and machine learning tools to design effective algorithms for image inverse problems.This paper mainly reviews three types of methods in image inverse problem,namely,applied and computational harmonic analysis method(represented by wavelets and wavelet frames),partial differential equation(PDE) method and deep learning method.We will review the modeling philosophies of these methods,explore the connections and differences among them,their advantages and disadvantages,and further discuss the feasibility and benefit of the integration of these methods.
作者 董彬 Dong Bing(Beijing International Center for Mathematical Research,Peking University,Beijing 100871,China)
出处 《计算数学》 CSCD 北大核心 2019年第4期343-366,共24页 Mathematica Numerica Sinica
关键词 图像反问题 图像重建 医疗影像 图像识别 变分模型 偏微分方程 小波变换 卷积神经网络 深度学习 Image inverse problem image reconstruction medical imaging image recognition variational model partial differential equations wavelet transform convolutional neural network deep learning
  • 相关文献

参考文献1

二级参考文献26

  • 1G. Beylkin, R. Coifman, and V. Rokhlin, Fast wavelet transforms and numerical algorithms. I, Cornrnun. Put. Appl. Math., 44 (1991), 141-183.
  • 2L. Borup, R. Gribonval and M. Nielsen, Bi-framelet systems with few vanishing moments characterize Besov spaces, Appl. Comput. Harmon. A., 17 (2004), 3-28.
  • 3J.-F. Cai, R.H. Chan, L. Shen, and Z. Shen, Restoration of chopped and nodded images by framelets, SIAM J. Sci. Comput., 30 (2008), 1205-1227.
  • 4J.-F. Cai, R.H. Chan, and Z. Shen, A framelet-based image inpainting algorithm, Appl. Comput. Harmon. A., 24 (2008), 131-149.
  • 5J.-F. Cai, S. Osher, Z. Shen, Linearized Bregman iterations for frame-based image deblurring, SIAM J. Imaging Sci., 2 (2009), 226-252.
  • 6A. Chai and Z. Shen, Deconvolution: A wavelet frame approach, Numer. Math., 106 (2007), 529-587.
  • 7R.H. Chan, T.F. Chan, L. Shen, and Z. Shen, Wavelet algorithms for high-resolution image reconstruction, SIAM J. Sci. Comput., 24 (2003), 1408-1432.
  • 8R.H. Chan, S.D. Riemenschneider, L. Shen, and Z. Shen, Tight frame: an efficient way for high- resolution image reconstruction, Appl. Comput. Harmon. A., 17 (2004), 91-115.
  • 9R.H. Chan, S.D. Riemenschneider, L. Shen, and Z. Shen, High-resolution image reconstruction with displacement errors: A framelet approach, Int. J. Imag. Syst. Tech., (2005), 91-104.
  • 10R.H. Chan, L. Shen, and Z. Shen, A framelet-based approach for image inpainting, 2005. Research Report 2005-04(325), Department of Mathematics, The Chinese University of Hong Kong.

同被引文献22

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部