期刊文献+

机器学习驱动的多Corner STA加速方法 被引量:4

Multi-corner STA Acceleration Based on Machine Learning
下载PDF
导出
摘要 静态时序分析在芯片的物理设计中扮演着重要的作用,其贯穿设计流程始终,耗时巨大,多数时间用于在不同工艺、电压、温度条件下的多Corner组合分析。论文研究多Corner在时序分析方面的相关性并利用机器学习的方法对其进行建模,以利用已知Corner时序结果预测未知Corner时序结果而不需额外的运行时间。实验结果表明,线性模型可以有效地进行预测,在利用7个已知时序结果的Corner预测余下7个未知时序结果的Corner时,能达到2.07ps(1.76%)的平均绝对误差。同时,基于模型的强稳健性,可以采用约束驱动的Corner选取策略,有效地减少多Corner角组合时序分析所需的时间,加速物理设计流程。 Static Timing Analysis plays a vital role in today’s high-complex circuit physical design and is always used to go through the whole design flow.The timing analysis can take much time,especially the multi-corner analysis in different process,voltage and temperature cases.The correlation between the corners in timing analysis is researched,and the machine learning model is built to predict timing results at unanalyzed corners from certain analyzed corners,without spending extra running time.The experimental result shows that the linear model can make an effective prediction.For example,the timing of 7 corners is used to predict the rest timing of 7 corners and achieve the mean absolute error within 2.07 ps(1.76%).Since the model has good robustness,the constraint-driven strategy can be implemented,significantly reducing time in multi-corner analysis and accelerating the physical design flow.
作者 张书政 赵振宇 冯超超 ZHANG Shuzheng;ZHAO Zhenyu;FENG Chaochao(College of Computer Science and Technology,National University of Defense Technology,Changsha 410073)
出处 《计算机与数字工程》 2019年第11期2714-2717,共4页 Computer & Digital Engineering
基金 核高基项目“国产处理器核心性能提升研究”(编号:2018ZX01029103) 国家自然科学基金项目(编号:61902408)资助
关键词 物理设计 机器学习 CORNER physical design machine learning Corner
  • 相关文献

参考文献1

二级参考文献10

  • 1DAI V, YANG J, RODRIGUEZ N, et al. DRC Plus: augmenting standard DRC with pattern matching on 2D geometries [C]//Design for Manufaeturability Through Design-Process Integration. San Jose, CA: SHE, 2007: 65210A.
  • 2NAGASE N, SUZUKI K, TAKAHASHI K, et al. Study of hotspot detection using neural network judgement [C]//Photomask and Next-Generation Lithography Mask Technology XIV. Yokohama, Japan: SPIE, 2007:66071B.
  • 3WUU J Y, PIKUS F G, TORRES A, et al. Detecting context sensitive hotspots in standard cell libraries [C]//Design for Manufacturability Through Design- Process Integration III. San Jose, CA: SPIE, 2009: 727515.
  • 4DING D, WU X, GHOSH J, et al. Machine learning based lithographic hotspot detection with critical-feature extraction and classification [ C]//International Conference on IC Design and Technology, Austin, TX: IEEE. 2009.
  • 5BYUN H, LEE S W. Applications of Support Vector Machines for Pattern Recognition: A Survey. Pattern Recognition with Support Vector Machines[M]. Berlin: Springer, 2002 : 571 - 591.
  • 6MATOSF M D S, BATISTA L V, POEL J V D. Face recognition using DCT coefficients selection [C]//ACM Symposium on Applied Computing. Fortaleza, Ceara, Brazil: ACM, 2008:1753-1757.
  • 7HONGX, YAO H, WAN Y, et al. A PCA based visual DCT feature extraction method for lip-reading [C]//International Conference on Intelligent Information Hiding and Multimedia. Los Alamitos, CA: IEEE Computer Society, 2006 : 321 - 326.
  • 8GUYON I, ELISSEEFF A. An introduction to variable and feature selection [J]. J Machine Learning Research, 2003,3(4) : 1157- 1182.
  • 9GOLDBERG D. Genetic Algorithms in Search, Optimization and Machine Learning[M]. Reading, MA: Addison Wesley, 1989.
  • 10CHANG C-C, LIN C J. 2001. LIBSVM: a library for support vector machines [CP/OL][2010-3-7], ht- tp://www, csie. ntu. edu. tw/-cjlin/libsvm.

共引文献2

同被引文献3

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部