期刊文献+

基于YOLO算法的船舶识别定位系统 被引量:3

Ship Identification and Positioning System Based on YOLO Algorithm
下载PDF
导出
摘要 针对船舶AIS系统船舶定位的精确性以及可靠性的不足,不能很好的适用于港口码头的自动停泊,本文提出一种基于YOLO算法的船舶识别定位系统。YOLO算法模型是由卷积层、池化层以及全连接层组合而成,是一种端到端的快速识别监测算法,该算法计算速度很快并且拥有极强的抗干扰性。通过YOLO算法该系统能够快速的识别港区内船舶的类别、型号、货物以及位置信息,减小船舶AIS系统的误差,为船舶的自动停泊、靠泊提供数据支持。 According to the inaccuracy and unreliability of ship positioning in AIS system, it cannot be applied to the automatic parking of port terminals. This paper proposes a ship identification and positioning system based on YOLO algorithm. The YOLO algorithm model is a combination of convolutional layer, pooling layer and fully connected layer. It is an end-to-end fast identification monitoring algorithm. The algorithm is fast and has strong anti-interference. The system can quickly identify the type, model, cargo and position information of ships in the port area. reduce the error of the ship’s AIS system, and provide data support for the automatic ship mooring through the YOLO algorithm.
作者 马吉顺 吴天明 韩鹏 郑茜文 赵斌 MA Ji-shun;WU Tian-ming;HAN Peng;ZHENG Qian-wen;ZHAO Bin(CSSC(Zhejiang)Ocean Technology Co.,Ltd.,Zhoushan,Zhejiang 316000)
出处 《新型工业化》 2019年第9期33-37,共5页 The Journal of New Industrialization
关键词 YOLO算法 机器视觉 船舶监测 YOLO algorithm Machine vision Ship monitoring
  • 相关文献

参考文献1

二级参考文献19

  • 1Teoh S S, Braunl T. Symmetry-based monocular vehicle detection syste,n [ J 1. Machiru, Vi.:inn and Applications, 2012, 23(5): 831 -842.
  • 2Sivaraman S, Trivedi M M. Integrated lane and vehicle detection, localization, and tracking: a synergistic ap- proach [ J 1- IEEE Transactions on Intelligent Tran.:porta- tion Sy.:ten',s, 2013, 14(2) : 906 -917.
  • 3Wang H, Cai Y F, Chert L. A vehicle detection algo- rithm based on deep belief network[ J]. The Scientific World Journal, 2014, doi: 10.1155/2014/647380.
  • 4Wang Hai, Cai Yingfeng. A muhistep framework for vi-sion based vehicle detection [ J 1. Journal of Applied Mathematics, 2014, doi: 10. 1155/2014/876451.
  • 5Kim Giseok, Cho Jae-Soo. Vision-based vehicle detec- tion and inter-vehicle distance estimation [ C ]//Procee- dings of 2012 12th International Conference on Control, Automation and System:. Jeju Island, Korea: IEEE Computer Society, 2012:625 - 629.
  • 6Khuwuthyakorn P, Robles-Kelly A, Zhou J. Object of" interest detection by saliency learning [ C ]//Proceedings of the 1 l th European Colererwe on Computer Vision. Herakhon, Crete, Greece: Springer Verlag, 2010: 636 - 649.
  • 7Shi Liang, Wang Jinqiao, Xu Lei, et al. Context sa- liency based image summarization [C] //Proceedings of the 2009 IEEE International Conferetwe on Multimedia and Expo. New York: IEEE Computer Society, 2009: 270 - 273.
  • 8Donoser M, Urschler M, Hirzer M, et al. Saliency dri- ven total variation segmentation [ C ] //Proceedings of 2009 IEEE 12th International Conference on Computer VL:ion. Kyoto, Japan: IEEE, 2009:817-824.
  • 9Vikram T N, Tscherepanow M, Wrede B. A saliency map based on sampling an image into random rectangular regions of interest [ J ]. Pattern Recognition, 2012, 45 (9) : 3114 -3124.
  • 10Scherer D, Mtiller A, Behnke S. Evaluation of pooling operations in convolutional architectures for object recog- nition [ C ]//Proceedings of 20th Interm:tional Conference on Artificial Neural Networks. Thessaloniki, Greece: Springer Verlag, 2010: 92- 101.

共引文献16

同被引文献10

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部