期刊文献+

钨的辐照硬化效应 被引量:1

Radiation hardening effect of tungsten
下载PDF
导出
摘要 钨因其高熔点、良好的高温力学性能等优点在核能领域有着重要应用,并且是目前最具应用前景的聚变堆面向等离子体材料。钨等核材料在辐照环境服役时,通常伴随力学性能的劣化,直接威胁到反应堆的运行安全。因此,开展辐照对钨力学性能影响的研究具有非常重要的意义。本文主要讨论钨的辐照硬化效应,首先介绍了钨独特的力学行为,之后从实验和数值模拟两方面综述了钨辐照硬化的研究进展,总结了辐照温度和剂量、塑性变形温度、晶粒度、织构等因素影响辐照硬化的规律。在此基础上,展望了该领域未来可能的研究重点。 Tungsten has important applications in the field of nuclear energy because of its high melting point and good mechanical properties at high temperature, and it is the most promising plasma facing material for fusion reactor at present. When tungsten and other nuclear materials are in service in radiation environment, they face the deterioration of mechanical properties, which directly threatens the safety of reactor operation. Therefore, it is of great significance to study the effects of radiation on the mechanical properties of tungsten. In this paper, the radiation hardening effect of tungsten is discussed. Firstly, the unique mechanical behaviors of tungsten are introduced. Then, the researches on tungsten radiation hardening are reviewed from experiment and simulation aspects. The effects of radiation temperature and dose, plastic deformation temperature, grain size, texture and other factors on radiation hardening are summarized. On this basis, the possible future focus in this field is prospected.
作者 史佳庆 吴恺慆 沈耀 SHI Jia-qing;WU Kai-tao;SHEN Yao(School of Materials Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2019年第11期1-12,共12页 Transactions of Materials and Heat Treatment
基金 国家磁约束核聚变能发展研究专项(2018YFE0308105)
关键词 辐照硬化 辐照缺陷 力学性能 tungsten radiation hardening radiation defects mechanical property
  • 相关文献

参考文献3

二级参考文献117

  • 1何宝平,陈伟,王桂珍.CMOS器件^(60)Coγ射线、电子和质子电离辐射损伤比较[J].物理学报,2006,55(7):3546-3551. 被引量:15
  • 2Alsabbagh A, Valiev R Z, Murty K L. 2013. Influence of grain size on radiation effects in a low carbon steel. Journal of Nuclear Materials, 443: 302-310.
  • 3Arsenlis A, Rhee M, Hommes G, Cook R, Marian J. 2012. A dislocation dynamics study of the transition from homogeneous to heterogeneous deformation in irradiated body-centered cubic iron. Acta Materialia, 60: 3748-3757.
  • 4Arsenlis A, Wirth B D, Rhee M. 2004. Dislocation density-based constitutive model for the mechanical behaviour of irradiated Cu. Philosophical Magazine, 84: 3617-3635.
  • 5Asaro R J, Rice J R. 1977. Strain localiazation in ductile single-crystals. Journal of the Mechanics and Physics of Solids, 25: 309-338.
  • 6Bai X M, Uberuaga B P. 2013. The influence of grain boundaries on radiation-induced point defect produc- tion in materials: A review of atomistic studies. Jom, 65: 360-373.
  • 7Bai X M, Voter A F, Hoagland R G, Nastasi M, Uberuaga B P. 2010. Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science, 327: 1631-1634.
  • 8Barton N R, Arsenlis A, Marian J. 2013. A polycrystal plasticity model of strain localization in irradiated iron. Journal of the Mechanics and Physics of Solids, 61: 341-351.
  • 9Beamish E, Campafi C, Woo T K. 2010. Grain boundary sliding in irradiated stressed Fe-Ni bicrystals: a molecular dynamics study. Journal of Physics: Condensed Matter, 22: 345006.
  • 10Beyerlein I J, Caro A, Demkowicz M J, Mara N A, Misra A, Uberuaga B P. 2013. Radiation damage tolerant nanomaterials. Materials Today, 16: 443-449.

共引文献32

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部