摘要
Starch is the most important component in endosperm of sorghum grain.Usually,two types of starch are present:amylose(AM)and amylopectin(AP).The levels of AM and AP contents play a significant role in the appearance,structure,and quality of sorghum grains and in marketing applications.In the present study,a panel of 634 sorghum(Sorghum bicolor(L.)Moench)accessions were evaluated for starch,AM,and AP contents of grain,which included a mini core collection of 242 accessions from the International Crops Research Institute for the Semi-Arid Tropics(ICRISAT)in India,and 252 landraces and 140 cultivars from China.The average starch content was 67.64%and the average AM and AP contents were 20.19 and 79.81%,respectively.We developed a total of 260000 high-confidence single nucleotide polymorphism(SNP)markers in the panel of 634 accessions of S.bicolor using specific locus amplified fragment sequencing(SLAF-seq).We performed genome-wide association studies(GWAS)of starch,AM,and AM/AP of grain and SNP markers based on a mixed linear model(MLM).In total,70 significant association signals were detected for starch,AM,and AM/AP ratio of grain with P<4.452×10^-7,of which 10 SNPs were identified with significant starch,51 SNPs were associated with AM,and nine SNPs were associated with the AM/AP ratio.The Gene Ontology(GO)analysis identified 12 candidate genes at five QTLs associated with starch metabolism within the 200-kb intervals,located on chromosomes 1,5,6,and 9.Of these genes,Sobic.006G036500.1 encodes peptidyl-prolyl cis-trans-isomerase CYP38 responsible for hexose monophosphate shunt(HMS)and Sobic.009G071800 encodes 6-phospho-fructokinase(PFK),which is involved in the embden-meyerhof pathway(EMP).Kompetitive allele specific PCR(KASP)markers were developed to validate the GWAS results.The C allele is correlated with a high starch content,while the T allele is linked with a low level of starch content,and provides reliable haplotypes for MAS in sorghum quality improvement.
Starch is the most important component in endosperm of sorghum grain. Usually, two types of starch are present: amylose(AM) and amylopectin(AP). The levels of AM and AP contents play a significant role in the appearance, structure, and quality of sorghum grains and in marketing applications. In the present study, a panel of 634 sorghum(Sorghum bicolor(L.) Moench) accessions were evaluated for starch, AM, and AP contents of grain, which included a mini core collection of 242 accessions from the International Crops Research Institute for the Semi-Arid Tropics(ICRISAT) in India, and 252 landraces and 140 cultivars from China. The average starch content was 67.64% and the average AM and AP contents were 20.19 and 79.81%, respectively. We developed a total of 260 000 high-confidence single nucleotide polymorphism(SNP) markers in the panel of 634 accessions of S. bicolor using specific locus amplified fragment sequencing(SLAF-seq). We performed genome-wide association studies(GWAS) of starch, AM, and AM/AP of grain and SNP markers based on a mixed linear model(MLM). In total, 70 significant association signals were detected for starch, AM, and AM/AP ratio of grain with P<4.452×10–7, of which 10 SNPs were identified with significant starch, 51 SNPs were associated with AM, and nine SNPs were associated with the AM/AP ratio. The Gene Ontology(GO) analysis identified 12 candidate genes at five QTLs associated with starch metabolism within the 200-kb intervals, located on chromosomes 1, 5, 6, and 9. Of these genes, Sobic.006 G036500.1 encodes peptidyl-prolyl cis-trans-isomerase CYP38 responsible for hexose monophosphate shunt(HMS) and Sobic.009 G071800 encodes 6-phospho-fructokinase(PFK), which is involved in the embden-meyerhof pathway(EMP). Kompetitive allele specific PCR(KASP) markers were developed to validate the GWAS results. The C allele is correlated with a high starch content, while the T allele is linked with a low level of starch content, and provides reliable haplotypes for MAS in sorghum quality improvement.
基金
supported by the earmarked fund for China Agriculture Research System (CARS-06)