期刊文献+

深度学习中的学习者认知网络和动机策略分析——旨向深度学习的U型翻转教学效果研究 被引量:26

Analysis of Learners’ Cognitive Network and Motivation Strategy in Deep Learning: Study on the Effect of U-Flipped Teaching Directed Deep Learning
下载PDF
导出
摘要 深度学习关注学生知识迁移和学习体验,构建旨向深度学习的U型翻转教学模式,旨在通过认知网络分析探究学生的认知差异,继而探索高、中、低分组学生在作品质量、动机策略和自我效能感上的差异。研究发现:(1)在学习效果方面,实验组学生认知网络更丰富复杂,反映实验组认知水平更高、认知结构更广,再结合作品分析发现,高、中分层次实验组明显优于控制组,低分层次实验组高于控制组,但差异不显著;(2)在动机策略方面,高、中、低分层次实验组学生的学习态度、学习动机、合作学习显著优于控制组学生,其中,在自我效能感维度,实验组学生优于控制组学生,但在高、低分层次实验组与控制组不存在显著性差异。研究结果表明:旨向深度学习的U型翻转教学能有效激发学生动机,拓展认知并促进知识迁移,提供良好的学习体验,该学习模式为培养学生深度学习的能力提供借鉴。 Deep learning focuses on students’ knowledge application and learning experience. The research constructed a Uflipped teaching mode to support deep learning, and implemented an eight-week teaching experiment in two undergraduate classes of a university. It is aimed to explore the cognition differences between the two classes through epistemic network analysis, and seek the differences between the two classes among the high, middle and low level students in terms of works’ quality, motivation strategies and self-efficacy. The results show that:(1) In terms of learning effect, the epistemic network of the experimental group is richer and more sophisticated than that of the control group, reflecting that the students of the experimental group possess higher cognitive level and broader cognitive structure. Besides, the high, middle and low level students’ works of experimental group are better than those of the control group, but the difference between the low level students from the two groups is not significant;(2) In terms of motivation strategies, the learning attitude, motivation and cooperative learning of the experimental group at the high, middle and low levels are significantly better than those of the control group, the experimental group’s self-efficacy at the high, middle and low levels are better than those of the control group, but the differences between the high and low level students from the two groups are not significant. The research shows that U-flipped teaching aimed at deep learning effectively stimulate students’ motivation, expand their cognition, promote knowledge transfer, and provide high quality learning experience, so as to provide reference for training students’ deep learning ability.
作者 丁继红 Ding Jihong(School of Educational Science and Technology,Zhejiang University of Technology,Hangzhou Zhejiang 310023)
出处 《远程教育杂志》 CSSCI 北大核心 2019年第6期32-40,共9页 Journal of Distance Education
基金 浙江省哲学社会科学规划课题一般项目“教育精准服务助推教育过程公平模式研究”(18NDJC208YB) 国家自然科学基金项目“基于多维关联分析的教育精准服务模式研究”(71704160) 国家自然科学基金项目“高维空间下大数据多模态聚类与预测及精准教育服务研究”(61867002)的研究成果
关键词 深度学习 认知网络分析 学习分析 翻转课堂 U型翻转教学 教学模式 Deep Learning Epistemic Network Analysis Learning Analysis Flipped Classroom U-flipped Teaching Teaching Model
  • 相关文献

参考文献22

二级参考文献197

共引文献8240

同被引文献309

引证文献26

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部