摘要
本文主要运用PDE方法,在时间1-周期的哈密顿函数H(x,t,p)关于(x,t,p)连续,关于p凸且关于p强制、关于t线性的条件下,证明了存在一个常数c(critical value),使得u(x,t)?ct有界,其中u(x,t)是Hamilton-Jacobi方程ut+H(x,t,Dxu)=0的黏性解.
We are devoted to proving that there exists a constant c such thatu(x,t)-ct is bounded with PDE method,where u(x,t)is the viscosity solution of Hamilton-Jacobi equation ut+H(x,Dxu)=0,if the time 1-periodic Hamiltonian H(x,t,p)is continuous in(x,t,p),convex and coercive in p,and linear in t.
作者
朱海姣
李霞
ZHU Haijiao;LI Xia(School of Mathematics and Physics,Suzhou University of Science and Technology,Suzhou,Jiangsu,215009,P.R.China)
出处
《数学进展》
CSCD
北大核心
2019年第6期731-738,共8页
Advances in Mathematics(China)
基金
国家自然科学基金(Nos.11726602,11471238)