摘要
光纤通信故障数据智能检测,能够有效地保障网络安全运行。目前方法在检测光纤通信故障数据时,往往无法准确有效提取光纤通信故障数据,导致整体光纤通信故障数据检测效率较低,误检率较高。为此,设计了光纤通信故障数据的智能检测算法。聚类处理光纤通信数据,结合粒子群算法对聚类后的光纤通信数据进行故障特征属性提取,考虑光纤故障数据特征属性熵值以减小检测误差;构建目标检测函数,利用人工蜂群算法实现光纤通信故障数据进行搜索,对建立的目标函数进行优化求解,实现光纤通信故障数据智能检测算法设计。实验结果表明,所提算法能够实现光纤通信故障数据的高精度、高效率检测,能够为光纤通信领域的发展提供有效的科学支撑。
Optical fiber communication fault data intelligent detection can effectively ensure the safe operation of the network. At present,when detecting the optical fiber communication fault data,it is often unable to extract the optical fiber communication fault data accurately and effectively,which leads to low detection efficiency and high error detection rate of the overall optical fiber communication fault data. For this reason,an intelligent detection algorithm for fault data of optical fiber communication is designed. The optical fiber communication data is clustered,and then carry out the fault feature attribute extraction combined with particle swarm optimization algorithm. Considering fiber fault data feature attribute entropy value to reduce detection error. Construct target detection function,realize optical fiber communication fault data researching by using artificial Bee Colony algorithm and optimizing the established objective function. Finally,the intelligent detection algorithm of optical fiber communication fault data is designed. Experimental results show that the proposed algorithm can achieve high accuracy and efficiency detection of optical fiber communication fault data,and can provide an effective scientific support for the development of optical fiber communication field.
作者
魏爽
WEI Shuang(Sanya University,Sanya Hainan 572022,China)
出处
《激光杂志》
北大核心
2019年第11期118-122,共5页
Laser Journal
基金
三亚学院科学研究项目(No.USY18YSK014)
关键词
机器学习
光纤通信
故障数据
智能
检测
machine learning
aims
fibre communication
fault data
intelligence
detection