期刊文献+

基于深度学习的乳腺X线摄影钙化检出系统评估 被引量:6

Evaluation of mammography calcification detection system based on deep learning
原文传递
导出
摘要 探讨基于深度学习的乳腺X线影像钙化检出系统的价值.方法回顾性分析2013年1月至12月解放军总医院第五医学中心南院区乳腺X线常规检查1431例患者的5488幅影像,每例检查均拍摄头尾位(CC)及内外斜位(MLO)图像.通过低年资医师A独立阅片、高年资医师B审核的方式,建立钙化检出的参考标准.采用χ^2检验研究不同因素(钙化形态、钙化分布、分类、美国放射学院腺体构成分类、患者年龄)对于深度学习和医师A的影响.结果深度学习对所有钙化的敏感性96.76%(7649/7905),假阳性平均每幅影像1.04(5706/5488)个,平均每例检查3.99(5706/1431)个,假阳性率为42.73%(5706/13355).深度学习和医师A对于典型良性和可疑恶性间钙化、不同形态钙化的诊断差异均有统计学意义(P均<0.05).深度学习对于不同分布钙化、BI-RADS分类、美国放射学院腺体构成钙化的敏感性差异无统计学意义(P>0.05),而医师A的差异有统计学意义(P<0.05).深度学习和医师A对于不同年龄下钙化检出的敏感性差异均无统计学意义(P>0.05).结论基于深度学习的乳腺X线影像钙化检出系统具有很高的敏感性以及一定的稳定性,可以有效减少阅片流程中钙化,尤其是可疑恶性钙化的漏检. Objective To evaluate the performance of a deep learning(DL)based mammogram calcification detection system.Methods Screening digital mammographic examinations with standard cranio-caudal(CC)and medio-lateral oblique(MLO)views were performed in 1431 women(5488 mammogram images)who were enrolled between January and December in 2013.The DL system and a radiologist detect calcifications separately,and then both results are reviewed by a moreexperiencedradiologist.Sensitivities of the DL model and radiologist were compared.Different calcification morphology,distribution,BI-RADS categories,breast density and patient age were investigated by χ^2 tests.Results For DL system,sensitivity of all kinds of calcifications were 96.76%(7649/7905).The average false positive was 1.04 per image(5706/5488),3.99 per case(5706/1431).The false positive rate was 42.73%(5706/13355).There was no significant differences for DL system with different calcification distribution,BI-RADS categories,breast densities and patient ages(P>0.05).Conclusion Deep learning based mammogram calcification detection system shows high sensitivity and stability,which may help to reduce the missing rate of calcification(especially the suspicious ones).
作者 周娟 王婷婷 李明 赵建秀 双萍 盛复庚 Zhou Juan;Wang Tingting;Li Ming;Zhao Jianxiu;Shuang Ping;Sheng Fugeng(Department of Radiology,the Fifth Medical Centre,Southern District of Chinese PLA General Hospital,Beijing 100071,China)
出处 《中华放射学杂志》 CAS CSCD 北大核心 2019年第11期968-973,共6页 Chinese Journal of Radiology
基金 国家自然科学基金(21575161)。
关键词 乳腺X线摄影 可疑钙化 钙化检测 深度学习 Mammography Suspicious calcification Detection Deep learning
  • 相关文献

参考文献4

二级参考文献39

  • 1张保宁.乳腺癌临床研究的回顾与展望[J].中华医学杂志,2005,85(1):7-8. 被引量:47
  • 2杨正汉,冯逢,王霄英.磁共振成像技术指南[M].北京:人民军医出版社,2010:273.
  • 3Smith RA,Saslow D,Sawyer KA,et al.American Cancer Society guidelines for breast cancer screening:update 2003[J] .CA Cancer J Clin,2003,53 (3):141-169.
  • 4Leong SP,Shen ZZ,Liu TJ,et al.Is breast cancer the same disease in Asian and Western countries?[J] .World J Surg,2010,34 (10):2308-2324.
  • 5American College of Radiology (ACR).Breast Imaging Reporting and Data System Atlas (BI-RADS Atlas)[M] .4th ed.Reston:American College of Radiology,2003.
  • 6Tamaki K,Ishida T,Miyashita M,et al.Correlation between mammographic findings and corresponding histopathology:potential predictors for biological characteristics of breast diseases[J] .Cancer Sci,2011,102(12):2179-2185.
  • 7Ferranti C,Coopmans de Yoldi G,Biganzoli E,et al.Relationships between age,mammographic features and pathological tumour characteristics in non-palpable breast cancer[J] .Br J Radiol,2000,73 (871):698-705.
  • 8Cancello G,Maisonneuve P,Rotmensz N,et al.Prognosis and adjuvant treatment effects in selected breast cancer subtypes of very young women (< 35 years) with operable breast cancer[J] .Ann Oncol,2010,21 (10):1974-1981.
  • 9Maskarinec G, Morimoto Y, Laguana MB, et al. Bioimpedence to assess breast density as a risk factor for breast cancer in adult women and adolescent girls[J]. Asian Pac J Cancer Prey, 2016, 17(1): 65-71.
  • 10Chen X, Moschidis E, Taylor C, et al. Breast cancer risk analysis based on a novel segmentation framework for digital mammograms[J]. Med Image Comput Comput Assist Interv, 2014, 17(Pt 1): 536-543.

共引文献128

同被引文献37

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部