摘要
探讨基于深度学习的乳腺X线影像钙化检出系统的价值.方法回顾性分析2013年1月至12月解放军总医院第五医学中心南院区乳腺X线常规检查1431例患者的5488幅影像,每例检查均拍摄头尾位(CC)及内外斜位(MLO)图像.通过低年资医师A独立阅片、高年资医师B审核的方式,建立钙化检出的参考标准.采用χ^2检验研究不同因素(钙化形态、钙化分布、分类、美国放射学院腺体构成分类、患者年龄)对于深度学习和医师A的影响.结果深度学习对所有钙化的敏感性96.76%(7649/7905),假阳性平均每幅影像1.04(5706/5488)个,平均每例检查3.99(5706/1431)个,假阳性率为42.73%(5706/13355).深度学习和医师A对于典型良性和可疑恶性间钙化、不同形态钙化的诊断差异均有统计学意义(P均<0.05).深度学习对于不同分布钙化、BI-RADS分类、美国放射学院腺体构成钙化的敏感性差异无统计学意义(P>0.05),而医师A的差异有统计学意义(P<0.05).深度学习和医师A对于不同年龄下钙化检出的敏感性差异均无统计学意义(P>0.05).结论基于深度学习的乳腺X线影像钙化检出系统具有很高的敏感性以及一定的稳定性,可以有效减少阅片流程中钙化,尤其是可疑恶性钙化的漏检.
Objective To evaluate the performance of a deep learning(DL)based mammogram calcification detection system.Methods Screening digital mammographic examinations with standard cranio-caudal(CC)and medio-lateral oblique(MLO)views were performed in 1431 women(5488 mammogram images)who were enrolled between January and December in 2013.The DL system and a radiologist detect calcifications separately,and then both results are reviewed by a moreexperiencedradiologist.Sensitivities of the DL model and radiologist were compared.Different calcification morphology,distribution,BI-RADS categories,breast density and patient age were investigated by χ^2 tests.Results For DL system,sensitivity of all kinds of calcifications were 96.76%(7649/7905).The average false positive was 1.04 per image(5706/5488),3.99 per case(5706/1431).The false positive rate was 42.73%(5706/13355).There was no significant differences for DL system with different calcification distribution,BI-RADS categories,breast densities and patient ages(P>0.05).Conclusion Deep learning based mammogram calcification detection system shows high sensitivity and stability,which may help to reduce the missing rate of calcification(especially the suspicious ones).
作者
周娟
王婷婷
李明
赵建秀
双萍
盛复庚
Zhou Juan;Wang Tingting;Li Ming;Zhao Jianxiu;Shuang Ping;Sheng Fugeng(Department of Radiology,the Fifth Medical Centre,Southern District of Chinese PLA General Hospital,Beijing 100071,China)
出处
《中华放射学杂志》
CAS
CSCD
北大核心
2019年第11期968-973,共6页
Chinese Journal of Radiology
基金
国家自然科学基金(21575161)。