期刊文献+

无网格Chebyshev配点法求解二维位势问题

Meshless Chebyshev Collocation Method for Solving Two-dimensional Potential Problems
下载PDF
导出
摘要 基于Chebyshev正交多项式插值理论和无网格配点技术,提出一种新型的无网格数值离散方法,称之为Chebyshev配点法.所提方法采用Chebyshev多项式的零点(Gauss-Lobatto节点)为插值节点,可最大限度地降低龙格现象,并且提供插值多项式的最佳一致逼近.数值算例表明,本文算法稳定,效率高,并可达到很高的计算精度. In this study,a new framework for the numerical solutions of two-dimensional(2D)potential problems is presented.A Chebyshev collocation scheme(CCS)is introduced for the efficient and accurate approximation of particular solution for the given 2D boundary value problem.We collocate the numerical scheme at the Gauss-Lobatto nodes to ensure the pseudo-spectral convergence of the Chebyshev interpolation.Two benchmark numerical examples in both smooth and piecewise smooth 2D geometries are presented to demonstrate the applicability and efficiency of the proposed method.
作者 王者 谷岩 WANG Zhe;GU Yan(School of Electronic Information,Qingdao University,Qingdao,Shandong 266071,China;School of Mathematics and Statistics,Qingdao University,Qingdao,Shandong 266071,China)
出处 《数学建模及其应用》 2019年第3期8-12,共5页 Mathematical Modeling and Its Applications
基金 国家自然科学基金项目(11872220) 山东省自然科学基金项目(ZR2017JL004)
关键词 无网格法 Chebyshev正交多项式 最佳一致逼近 二维位势问题 meshless method Chebyshev collocation method pseudo-spectral convergence two-dimensional potential problems
  • 相关文献

参考文献2

二级参考文献16

  • 1PanXiaofei,SzeKimYim,ZhangXiong.AN ASSESSMENT OF THE MESHLESS WEIGHTED LEAST-SQUARE METHOD[J].Acta Mechanica Solida Sinica,2004,17(3):270-282. 被引量:3
  • 2王兆清,冯伟.自然单元法研究进展[J].力学进展,2004,34(4):437-445. 被引量:23
  • 3李录贤,王铁军.扩展有限元法(XFEM)及其应用[J].力学进展,2005,35(1):5-20. 被引量:132
  • 4ZHANG Zhi-qian(张智谦),ZHOU Jin-xiong(周进雄),WANG Xue-ming(王学明),ZHANG Yan-fen(张艳芬),ZHANG Ling(张陵).h-ADAPTIVITY ANALYSIS BASED ON MULTIPLE SCALE REPRODUCING KERNEL PARTICLE METHOD[J].Applied Mathematics and Mechanics(English Edition),2005,26(8):1064-1071. 被引量:4
  • 5Xi Zhang Zhenhan Yao Zhangfei Zhang.Application of MLPG in large deformation analysis[J].Acta Mechanica Sinica,2006,22(4):331-340. 被引量:8
  • 6Golberg M A, Chen C S. The Method of Fundamental Solutions for Potential, Helmholtz and Diffusion Problems [C]//Golberg M A. Boundary integral methods-numerical and mathematical aspects. Southampton: Computational Mechanics Publications, 1998, 103-176.
  • 7Chen J T, Chen I L, Chen K H, Yeh Y T, Lee Y T. A meshless method for free vibration of arbitrarily shaped plates with clamped boundaries using radial basis function[J]. Engineering Analysis with Boundary Elements, 2004, 28(5): 535- 545.
  • 8Chen W, Tanaka M. A meshless, exponential convergence, integration-free, and boundary-only RBF technique[J]. Computers and Mathematics with Applications, 2002, 43: 379-391.
  • 9Chen W, Hon Y C. Numerical convergence of boundary knot method in the analysis of Hetmholtz, modified Helmhohz, and convection-diffusion problems [J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192: 1859-1875.
  • 10Jin B T, Zheng Y. Boundary knot method for some inverse problems associated with the Helmholtz equation[J]. International Journal for Numerical Methods in Engineering, 2005, 62(12): 1636-1651.

共引文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部