摘要
本文研究了一类非线性四阶常微分方程边值问题{u^(4)(t)=λf(t,u(t)),t∈(0,1),u(0)=u″(0)=u(1)=0,u′(1)+C(u(1))u(1)=0正解的存在性,其中λ是一个正参数,f:[0,1]×R→[0,∞)满足L 1-Caratheodory条件,C:[0,∞)→[0,∞)连续.主要结果的证明基于锥拉伸与压缩不动点定理.
In this paper,we study the existence of positive solutions for a class of nonlinear fourth-order ordinary differential equations with boundary values:{u^(4)(t)=λf(t,u(t)),t∈(0,1),u(0)=u″(0)=u(1)=0,u′(1)+C(u(1))u(1)=0,whereλis a positive parameter,f:[0,1]×R→[0,∞)satisfies L 1-Caratheodory conditions,C:[0,∞)→[0,∞)is continuous.The proof of the main results is based on the fixed-point theorem of cone expansion-compression.
作者
张亚莉
ZHANG Ya-Li(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第6期1004-1008,共5页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(11671322)
关键词
四阶常微分方程
锥
正解
存在性
Fourth-order ordinary differential equation
Cone
Positive solution
Existence