摘要
本文研究了非线性二阶常微分方程周期边值问题{u″+a(t,u)u=λg(t)f(u),t∈[0,T],u(0)=u(T),u′(0)=u′(T)正解的存在性,其中λ是一个正参数,a:[0,T]×[0,∞)→R+为L^p-Carathéodory函数,g:[0,T]→[0,∞),f:[0,∞)→[0,∞)为连续函数.主要结果的证明基于锥上的不动点指数理论.
In this paper,we consider the existence of positive solutions for the following nonlinear second-order ordinary differential equation with periodic boundary values:{u″+a(t,u)u=λg(t)f(u),t∈[0,T],u(0)=u(T),u′(0)=u′(T),whereλis an positive parameter,a:[0,T]×[0,∞)→R+is a L^p-Carathéodory function,g:[0,T]→[0,∞),f:[0,∞)→[0,∞)are continuous functions.The proof of the main results is based on the fixed point index theory on cones.
作者
李朝倩
LI Zhao-Qian(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
出处
《四川大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第6期1026-1032,共7页
Journal of Sichuan University(Natural Science Edition)
基金
国家自然科学基金(11671322)
关键词
周期边值问题
锥
正解
存在性
Periodic boundary problem
Cone
Positive solution
Existence