期刊文献+

一维Helmholtz方程的优化差分法 被引量:4

AN OPTIMAL FINITE DIFFERENCE SCHEME FOR THE ONE-DIMENSIONAL HELMHOLTZ EQUATION
下载PDF
导出
摘要 对一维Helmholtz方程建立了优化的二阶差分格式.对数值波数和真实波数之间的误差进行了分析.基于极小化数值频散的思想,提出了选取加权系数的整体选取法和加细选取法.数值实验表明带加细参数的差分格式提高了数值精度,有效地抑制了数值频散. This paper presents an optimized second-order difference scheme for the one-dimensional Helmholtz equation.We analyze the error between the numerical wavenumber and the real wavenumber.Based on the idea of minimizing numerical dispersion,a global choice strategy and a refined choice strategy are proposed for selecting weighting coefficients of the difference scheme.Numerical experiments indicate that the difference method with the refined parameters improves the numerical accuracy and suppresses the numerical dispersion efficiently.
作者 周鲁川 吴亭亭 Zhou Luchuan;Wu Tingting(School of Mathematics and Statistics,Shandong Normal University,250358,Jinan,China)
出处 《山东师范大学学报(自然科学版)》 CAS 2019年第4期408-415,共8页 Journal of Shandong Normal University(Natural Science)
基金 国家自然科学基金资助项目(11301310) 山东省高等学校科学技术计划资助项目(J18KA221) 山东师范大学大学生创新创业训练计划资助项目(201810445356)
关键词 HELMHOLTZ方程 差分格式 数值频散 Helmholtz equation finite difference schemes numerical dispersion
  • 相关文献

参考文献5

二级参考文献22

  • 1I.M. Babuska and S.A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM Rev., 42:3 (2000), 451-484.
  • 2G. Bao and W. Sun, A fast algorithm for the electromagnetic scattering from a large cavity, SIAM J. Sci. Comput., 27:2 (2005), 553-574.
  • 3E. Erturk and C. Gokcol, Fourth-order compact formulation of Navier-Stokes equations and driven cavity flow at high Reynolds numbers, Int. J. Numer. Meth. Fl., 50 (2006), 421-436.
  • 4I. Harari and E. Turkel, Accurate finite difference methods for time-harmonic wave propagation, J. Comput. Phys., 119 (1995), 252-270.
  • 5M. Li, T. Tang and B, Fornberg, A compact fourth-order finite difference scheme for the'steady incompressible Navier-Stokes equations, Int. J. Numer. Meth. Fl.. 20 (1995), 1137-1151.
  • 6M. Li and T. Tang, A compact fourth-order finite difference scheme for unsteady Navier-Stokes equations, J. Sci. Comput., 16 (2001), 29-46.
  • 7Y.V.S.S. Sanyasiraju and V. Manjula, Higher order semi compact scheme to solve transient incompressible Navier-Stokes equations, Comput. Mech., 35 (2005), 441-448.
  • 8J. Shen and L. Wang, Spectral approximation of the Helmholtz equation with high wave numbers, SIAM J. Numer. Anal., 43:2 (2005), 623-644.
  • 9J. Shen and T. Tang, Spectral and High-Order Methods with Applications, Science Press, Beijing, 2007.
  • 10W.F. Spotz, High-Order Compact Finite Difference Schemes for Computational Mechanics. PhD thesis, University of Texas at Austin, December, 1995.

共引文献18

同被引文献8

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部