期刊文献+

基于区域生长算法的复杂建筑物屋顶点云分割 被引量:20

Point cloud segmentation on the roof of complicated building based on the algorithm of region growing
下载PDF
导出
摘要 精确分割建筑物屋顶激光雷达(light detection and ranging,LiDAR)点云是三维模型重建的重要环节。针对现有算法分割复杂建筑物屋顶面结构精度差的问题,提出一种以三角面为基元的基于区域生长算法的复杂建筑物屋顶点云分割方法。首先,构建Delaunay三角网建立各激光点间相互关系,计算各三角面法向量,利用同一建筑物面片上各三角面法向量基本一致的特征对点云进行初步划分;然后,由于点云散乱性及误差影响产生诸多散乱三角面,对各构成散乱三角面的点进行剖分,并基于具有良好鲁棒性的随机采样一致性算法(random sample consensus,RANSAC),结合Alpha Shape算法获取建筑物各面片边界,合并过度分割的面片及孤立点,完成建筑物屋顶点云分割。实验结果表明,该方法对复杂建筑物屋顶点云分割的完整性、正确性及质量均较为理想。 Segmenting light detection and ranging(LiDAR)point cloud of building accurately is the important section in the reconstruction of three-dimensional model.In view of the complex roof structure of complex buildings and poor segmentation accuracy of the existing algorithms,the authors put forward a kind of algorithm of region growing with the basic element of triangles to segment the point cloud of the building.First of all,Delaunay triangulation network is constructed,correlation is set up among laser points,unit normal vectors of triangles are calculated,initial partition is conducted on point cloud with the character that vectors in unit vector approach of triangles on the same plane of the building are basically consistent;then,because dispersion and deviation of point cloud could produce many disheveled triangles,dissection is conducted on points that are composed of disheveled triangles;based on good robustness of random sample consensus(RANSAC)algorithm,boundaries of planes of the building combining are obtained with Alpha Shape algorithm,plane and isolated point are combined in over-segmentation.The test result shows that the point cloud segmentation on the roof of the building is ideal in integrity,accuracy and quality with the method put forward in this paper.
作者 朱军桃 王雷 赵传 郑旭东 ZHU Juntao;WANG Lei;ZHAO Chuan;ZHENG Xudong(College of Geomatics and Geoinformation,Guilin University of Technology,Guilin 541006,China;Guangxi Key Laboratory of Spatial Information and Geomatics,Guilin 541006,China;Institute of Surveying and Mapping,Information Engineering University,Zhengzhou 450001,China)
出处 《国土资源遥感》 CSCD 北大核心 2019年第4期20-25,共6页 Remote Sensing for Land & Resources
基金 2019年广西研究生教育创新计划项目(编号:YCSW2019154)资助
关键词 LIDAR点云 DELAUNAY三角网 RANSAC算法 ALPHA Shape算法 LiDAR point cloud Delaunay triangulation network RANSAC algorithm Alpha Shape algorithm
  • 相关文献

参考文献6

二级参考文献28

  • 1张玲,郭磊民,何伟,陈丽敏.一种基于最大类间方差和区域生长的图像分割法[J].信息与电子工程,2005,3(2):91-93. 被引量:27
  • 2张小红,耿江辉.用不变矩从机载激光扫描测高点云数据中重建规则房屋[J].武汉大学学报(信息科学版),2006,31(2):168-171. 被引量:6
  • 3BLUM H A. Transformation for extraction new descriptors of shape [C] // Models for the Perception of Speech and Visual Form. Cambridge, MA: [s. n. ], 1967:362 - 380.
  • 4CORNEA N D, SILVER D, MIN P. Curve-skeleton applications [C]//IEEE Visualization Conference. [S.l. ] :IEEE, 2005:95 - 102.
  • 5BERTRAND G, AKTOUF Z. A three-dimensional thinning algorithm using subfields [J]. Vision Geometry Ⅲ, 1994, 95(2356) :113 - 124.
  • 6AMENTA N, CHOI S, KOLLURI R K. The power crust [J]. Computational Geometry, 2001, 19(2/3):127- 153.
  • 7VERROUST A, LAZARUS F. Extracting skeletal curves from 3D scattered data [J]. The Visual Computer, 2000, 16 (1):15-25.
  • 8MILNOR J. Morse theory [M]. New Jersey:Princeton University Press, 1963.
  • 9WUFC, MAWC, LIANGR H, et al.. Domain connected graph: the skeleton of a closed 3D shape for animation [J]. The Visual Computer, 2006, 22 (2):117 - 135.
  • 10WU F C, MAW C, LIOU P C, et al. Skeleton Extraction of 3D objects with visible repulsive force [C]//Eurographics Symp on Geometry Processing. [S.l.]: [s. n. ], 2003.

共引文献109

同被引文献164

引证文献20

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部