摘要
利用模论和软模的基本性质讨论软同态的分解性质.首先,定义单的软模同态和软模序列的正合;其次,证明软同态都可以分解为一个满的软同态和一个单的软同态的复合;最后讨论软正合序列的基本性质,给出几类简单的软模序列正合的等价条件,并利用两个软正合序列构造一个新的软正合序列.
By using module theory and the basic properties of soft modules,we discussed the decomposition properties of soft homomorphism.Firstly,we defined a single soft homomorphism of soft modules and soft exact sequence.Secondly,we proved that every soft homomorphism could be decomposed into the composition of an epimorphism and a monomorphism.Finally,we discussed the basic properties of soft exact sequences,and gave equivalent conditions for several kinds of simple soft modulus sequence to be exact,and constructed a new soft exact sequence by using two soft exact sequences.
作者
吴越
马晶
WU Yue;MA Jing(College of Mathematics,Jilin University,Changchun 130012,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2019年第6期1287-1291,共5页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11771252
11771176)
关键词
软模
软同态
软正合序列
soft module
soft homomorphism
soft exact sequence