期刊文献+

拟行(列)对称矩阵的Schur分解及正交对角分解

Schur Factorization and Orthogonal Diagonal Factorization of Quasi-row(column)Symmetric Matrices
下载PDF
导出
摘要 考虑拟行(列)对称矩阵的Schur分解、正交对角分解、Hermite矩阵分解和广义逆,给出拟行(列)对称矩阵的Schur分解、正交对角分解、Hermite矩阵分解和广义逆的计算公式.实例计算结果表明,该方法既减少了计算量与存储量,又不会降低数值精度. The author considered the Schur factorization,orthogonal diagonal factorization,Hermite matrix factorization and generalized inverse of quasi-row(column)symmetric matrices,gave the formulas of the Schur factorization,orthogonal diagonal factorization,Hermite matrix factorization and generalized inverse of quasi-row(column)symmetric matrices.The calculation results show that the method not only reduces the amount of calculation and storage,but also does not reduce the numerical accuracy.
作者 袁晖坪 YUAN Huiping(College of Mathematics and Statistics,Chongqing Technology and Business University,Chongqing 400067,China;Chongqing Key Laboratory of Social Economy and Applied Statistics,Chongqing 400067,China)
出处 《吉林大学学报(理学版)》 CAS 北大核心 2019年第6期1345-1350,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11271388) 重庆市自然科学基金(批准号:cstc2018jcyjAX0790)
关键词 拟行(列)对称矩阵 SCHUR分解 正交对角分解 广义逆 quasi-row(column)symmetric matrix Schur factorization orthogonal diagonal factorization generalized inverse
  • 相关文献

参考文献12

二级参考文献64

共引文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部