摘要
基于珊瑚礁优化算法,通过在种群的每次进化过程中引入遗传算法中的交叉和变异算子,提出一种遗传珊瑚礁优化算法,并将改进的遗传珊瑚礁优化算法运用到负载均衡中,有效解决了算法过早收敛的问题,提升了算法的优化性能.对比经典遗传算法、珊瑚礁优化算法等群智能算法,在CloudSim上仿真实验结果表明,遗传珊瑚礁优化算法优化负载均衡策略取得了满意的结果,提升了资源能耗利用率,均衡了控制策略.
Based on the coral reef optimization algorithm,we proposed a genetic coral reef optimization algorithm by introducing crossover and mutation operators in genetic algorithm into each evolution process of population.The improved genetic coral reef optimization algorithm was applied to load balancing.The algorithm effectively solves the problem of premature convergence and improves the optimization performance of the algorithm.Comparing swarm intelligence algorithms such as classical genetic algorithm and coral reef optimization algorithm,simulation results on CloudSim show that the genetic coral reef optimization algorithm achieves satisfactory results in optimizing load balancing strategy,thus improving the utilization rate of energy consumption and balancing the control strategy.
作者
袁赫潞
温长吉
吴建双
朱允刚
于合龙
YUAN Helu;WEN Changji;WU Jianshuang;ZHU Yungang;YU Helong(College of Information Technology,Jilin Agricultural University,Changchun 130118,China;Research Center of Precision Agriculture and Big Data Engineering in Jilin Province,Changchun 130118,China;College of Computer Science and Technology,Jilin University,Changchun 130012,China)
出处
《吉林大学学报(理学版)》
CAS
北大核心
2019年第6期1465-1471,共7页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11372155
61472161)
国家重点研发技术专项基金(批准号:2017YFD0502001)
吉林省自然科学基金(批准号:20180101041JC)
吉林省教育厅科研规划重点项目(批准号:2016186)
关键词
云计算
负载均衡
遗传算法
珊瑚礁优化算法
cloud computing
load balancing
genetic algorithm
coral reef optimization algorithm