期刊文献+

含时滞反馈控制的直齿圆柱齿轮主共振分析 被引量:3

Primary resonance analysis for a spur gear system with time delay feedback control
下载PDF
导出
摘要 为了减小直齿圆柱齿轮系统由于外载荷波动和时变啮合刚度引起的振动,建立了直齿圆柱齿轮的时滞反馈减振动力学模型,并利用多尺度法对时滞反馈齿轮传动系统进行求解,获得了齿轮系统主共振频率响应方程,通过分析比较载荷波动、啮合刚度波动和时滞反馈控制参数对主共振的影响,可以得出:齿轮系统存在的载荷波动和啮合刚度波动都会导致齿轮系统主共振不稳定;合理匹配的时滞控制参数能够使主共振快速收敛到稳定解,反之可能导致系统振动加剧,使系统稳定性变差。 In order to reduce vibration of a spur gear system caused by external load fluctuation and time-varying meshing stiffness one, its dynamical model with time delay feedback control was established. The multi-scale method was applied to solve this system, and obtain its primary resonance frequency equation. Effects of load fluctuation, mesh stiffness one and time delay feedback control parameters on the system’s primary resonance were analyzed contrastively. The results showed that the load fluctuation and gear meshing stiffness one can cause the system main resonance unstable;time delay control parameters should be matched reasonably to make the primary resonance quickly converge to the stable solution, otherwise, the system vibration may be intensified to cause the system’s stability worse.
作者 石慧荣 赵冬艳 李宗刚 张军平 SHI Huirong;ZHAO Dongyan;LI Zonggang;ZHANG Junping(School of Mechatronic Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)
出处 《振动与冲击》 EI CSCD 北大核心 2019年第21期91-96,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(11672121) 甘肃省自然科学基金(17JR5RA100) 甘肃省高等学校科研项目(2018D-10)
关键词 时滞反馈 直齿圆柱齿轮 多尺度法 主共振 稳定性 time delay feedback spur gear multi-scale method primary resonance stability
  • 相关文献

参考文献3

二级参考文献33

  • 1卢剑伟,沈博,钱立军.基于齿轮非线性动力学的变速器异响分析[J].汽车工程,2007,29(6):533-536. 被引量:11
  • 2Wang J, Li R, Peng X. Survey of nonlinear vibration of gear transmission systems [ J ]. Applied Mechanics Reviews, 2003, 56(3) : 309 -329.
  • 3Lu J, Chen H, Zeng F, et al. Influence of system parameters on dynamic behavior of gear pair with stochastic backlash [J]. Meccanica, 2014, 49(2) : 429 -440.
  • 4Wen Y, Yang J, Wang S. Random dynamics of a nonlinear spur gear pair in probabilistic domain [ J ]. Journal of Sound and Vibration, 2014, 333(20) : 5030 -5041.
  • 5Lu J, Zeng F, Xin J, et al. Influences of stochastic perturbation of parameters on dynamic behavior of gear system [ J]. Journal of Mechanical Science and Technology, 2011, 25(7) : 1667 - 1673.
  • 6Mo E, Naess A. Nonsmooth dynamics by path integration: an example of stochastic and chaotic response of a meshing gear pair [ J ]. Journal of Computational and Nonlinear Dynamics, 2009, 4(3) : 034501.
  • 7Naess A, Kolnes F E, Mo E. Stochastic spur gear dynamics by numerical path integration [ J ]. Journal of Sound and Vibration, 2007, 302(4/5): 936- 950.
  • 8Bonori G, Pellicano F. Non-smooth dynamics of spur gears with manufacturing errors [ J ]. Journal of Sound and Vibration, 2007, 306(1/2): 271-283.
  • 9Driot N, Perret-Liaudet J. Variability of modal behavior in terms of critical speeds of a gear pair due to manufacturing errors and shaft misalignments [ J ]. Journal of Sound and Vibration, 2006, 292(3/4/5) : 824 - 843.
  • 10Moore R E. Interval analysis [ M ]. Englewood Cliffs, New Jersey: Prentice-Hall, 1966.

共引文献13

同被引文献7

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部