期刊文献+

基于牵制协议的异质网络拟同步分析 被引量:1

Quasi-synchronization in heterogeneous networks based on pinning control protocol
下载PDF
导出
摘要 本文主要考虑一类异质谐振子系统的有界同步(或拟同步)问题。对于一般的异质谐振子系统,考虑了具有异质非线性扰动的情形,即每个谐振子的非线性扰动也是异质的。引入了一个领导者,基于牵制控制算法,设计了一个分布式同步协议。构造了一个Lyapunov函数,通过运用稳定性理论和线性矩阵不等式方法证明了异质谐振子系统在一定条件下可以实现拟同步,即每个跟随者谐振子的状态与领导者谐振子状态的差最终趋于有界的范围,给出了实现拟同步的充分性判据。同时,给出了拟同步误差上界的估计。最后,通过数值仿真验证了理论结果的有效性。 This paper mainly investigates the bounded synchronization(or quasi-synchronization) problem of heterogeneous harmonic oscillators. For a general heterogeneous harmonic oscillator system, heterogeneous nonlinear perturbations are considered for each harmonic oscillator. A leader is introduced to design a distributed synchronization protocol based on the pinning control algorithm. A Lyapunov function is constructed. By applying the stability theory and the linear matrix inequality method, it is proved that the heterogeneous harmonic oscillator systems can reach quasi-synchronization, that is, the errors between each follower harmonic oscillator and the leader harmonic oscillator tend to a bounded range. The sufficient criterion for achieving quasi-synchronization is derived. Furthermore, the upper bound of quasi-synchronization errors is estimated. Finally, numerical simulations are provided to verify the effectiveness of the theoretical results.
作者 马宏宸 王正新 关其峰 安伯坤 MA Hongchen;WANG Zhengxin;GUAN Qifeng;AN Bokun(School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;Jiangsu Engineering Lab for IOT Intelligent Robots(IOTRobot),Nanjing 210023,China)
出处 《电视技术》 2019年第7期32-36,共5页 Video Engineering
基金 江苏省自然科学基金面上项目(BK20181387) 江苏省高校自然科学研究面上项目(17KJD110006) 南京邮电大学大学生科技创新训练计划(STITP)(SYB2018010)
关键词 牵制控制算法 异质网络 拟同步 李雅普诺夫函数 pinning control algorithm heterogeneous networks quasi-synchronization Lyapunov function
  • 相关文献

参考文献2

二级参考文献16

  • 1Watts D J, Strogatz S H. Collective dynamics of 'small- world: networks[J] Nature, 1998,393 (6684) : 440-442.
  • 2Barabasi A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999,286(5439) : 509-512.
  • 3Strogatz S H. Exploring complex networks [J]. Nature, 2001, 410(6825) :268-276.
  • 4Ebel H,Mielsch L I,Borbholdt S. Scale-free topology of e-mail networks[J]. Phys Rev E,2002,66(3) :035103-035106.
  • 5Albert R, Barabasi A L. Statistical mechanics of complex networks[J]. Rev Mod Phys, 2002,74 (1) : 47-97.
  • 6Wu Y Q. Outer synchronization analysis and computation of complex networks[D]. Lanzhou Gansu: Lanzhou Univer- sity, 2011:1-5.
  • 7Li C P, Sun W G, Kurths J. Synchronization between two coupled complex networks[J] Phys Rev E, 2007,76 (4) : 046204-046209.
  • 8Tang H W, Chen L, Lua J A, et al. Adaptive synchronization between two complex networks with nonidentical topological structures[J]. Physica A, 2008,387(22) : 5623-5630.
  • 9Wu X Q,Zheng W X,Zhou J. Generalized outer Syn-chroni-.zation between complex dynamical networks[J]. Chaos, 2009, 19(1) :013109-013117.
  • 10Li C P,Xu C X,Sun W G,et al. Outer synchronization of coupled discrete-time networks [J]. Chaos, 2009, 19 ( 1 ) : 013106-013112.

共引文献2

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部