期刊文献+

基于连续小波神经网络的华北型煤田底板破坏深度预测研究

Study on Prediction of Floor Failure Depth of North China Coalfield Based on Continuous Wavelet Neural Network
下载PDF
导出
摘要 根据全国典型煤矿底板破坏深度的实测资料,应用Matlab软件的分析功能,对煤层采深、倾角、采厚、工作面斜长、底板抗破坏能力五个在底板破坏中发挥主要作用的影响因子进行全面分析[1],利用小波神经网络对华北型煤田底板破坏深度进行了预测,发现基于连续小波神经网络的预测模型与实测结果更接近,能够在底板破坏深度预测中发挥借鉴作用。 Based on the measured data of the floor failure depth of typical coal mines in China, and using the analysis function of Matlab software, this paper makes a comprehensive analysis of five influencing factors which play a major role in floor failure, namely, mining depth, dip angle, mining thickness, face length and floor resistance to destruction. Wavelet neural network is used to predict the depth of floor failure of North China type coalfield, it is found that the prediction model based on continuous wavelet neural network is closer to the measured results. It can be used for a reference in predicting the depth of floor failure.
作者 汪淼 李冉 孟乐 Wang Miao;Li Ran;Meng Le(College of Geological Sciences&Engineering,Shandong University of Science and Technology,Shandong Qingdao 266590)
出处 《山东煤炭科技》 2019年第11期197-200,共4页 Shandong Coal Science and Technology
基金 国家自然科学基金项目(41572244,51804184,41807283) 山东科技大学人才引进科研启动基金项目(2017RCJJ031) 泰山学者建设工程专项经费资助
关键词 连续小波神经网络 MATLAB软件 华北型煤田 底板破坏深度 经验公式 continuous wavelet neural network Matlab software North China coalfield floor failure depth empirical formula
  • 相关文献

参考文献4

二级参考文献21

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部