期刊文献+

空间直线的自适应阈值稳健拟合方法与优化 被引量:7

Adaptive Threshold Robust Fitting Method and Optimization for Spatial Straight Line
下载PDF
导出
摘要 针对RANSAC算法应用于空间直线数据处理时具有较强的稳健性,但需要已知内点阈值且计算模型未能充分应用观测数据等问题,基于RANSAC算法提出了空间直线的自适应阈值稳健拟合方法;结合空间直线拟合的PEIV模型,优化了自适应阈值稳健拟合方法。仿真和工程实例数据表明,自适应阈值稳健拟合方法及优化算法可自动获取内点阈值;获得的空间直线几何参数估计具有最优统计特性,抗差性好,可靠性和实用性较强;对其他空间几何形体的稳健拟合处理具有参考意义。 When the RANSAC algorithm is applied to spatial linear data processing, it has strong robustness. However, the inner points threshold must be known and the observation data are not fully utilized by the computational model. Based on the RANSAC algorithm, the adaptive threshold robust fitting method of the spatial line is proposed. Combined with the PEIV model of spatial line, the adaptive threshold robust fitting method is optimized. The simulation and engineering data show that the method and optimization algorithm can automatically obtain the inner points threshold, and the obtained spatial linear geometric parameters have the optimal statistical characteristics, good tolerance, strong reliability and practicability. The method and optimization algorithm have reference significance for the robust fitting processing of other spatial geometries.
作者 包建强 张献州 罗超 李圆 陈霄 肖源淼 BAO Jianqiang;ZHANG Xianzhou;LUO Chao;LI Yuan;CHEN Xiao;XIAO Yuanmiao(Faculty of Geosciences and Environmental Engineering,Southwest Jiaotong University,Chengdu 611756,China;State-Province Joint Engineer Laboratory in Spatial Information Technology for High-Speed Railway,Chengdu 611756,China)
出处 《测绘科学技术学报》 北大核心 2019年第3期238-243,共6页 Journal of Geomatics Science and Technology
基金 成都市科技项目(VQ21SS1135Y17004 LR01HX1135Y17047)
关键词 自适应阈值 稳健估计 空间直线 随机采样一致性算法 PEIV模型 直线度 adaptive threshold robust estimation spatial straight line RANSAC PEIV straightness
  • 相关文献

参考文献14

二级参考文献73

  • 1杜明芳.空间直线拟合[J].北京印刷学院学报,1996,4(2):27-31. 被引量:15
  • 2陈付幸,王润生.基于预检验的快速随机抽样一致性算法[J].软件学报,2005,16(8):1431-1437. 被引量:106
  • 3郭继东,向辉.一个基本矩阵的鲁棒估计算法[J].计算机应用,2005,25(12):2845-2848. 被引量:5
  • 4陈付幸,王润生.一种新的消失点检测算法[J].电子与信息学报,2006,28(8):1458-1462. 被引量:8
  • 5于晓秋,李欣,张宏礼.MATLAB数值实验[M].沈阳:辽宁科学技术出版社.2004:34-40.
  • 6[1]Zitova B,Flusser J.Image registration methods:A survey[R].Institute of Information Theory and Automation technique report,Academy of Czech Republic,2000.
  • 7[2]Harris C,Stephens M.A Combined corner and edge detector[C].Proc.4th Alvey Vision Conference,1988:147-154.
  • 8[3]Fischler M,Bolles R.Random Sample Consensus:a paradigm for model fitting with application to image analysis and automated cartography[J].Communications of the ACM,1981,24(6):381-395.
  • 9[4]Torr P H S,Murray D W.The development and comparison of robust methods for estimating the fundamental matrix[J].Int Journal of Computer Vision,1997,24(3):271-300.
  • 10[6]Forsyth D,Ponce J.Computer Vision a modern approach[M].Prentice Hall,2003:305-307.

共引文献247

同被引文献68

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部