期刊文献+

基于语音情感的心理咨询与性格分析算法研究 被引量:1

Research on Psychological Counseling and Personality Analysis Algorithm Based on Speech Emotion
下载PDF
导出
摘要 语音信号在传递语义信息的同时,还传递着情感信息,而情感在人类的交流和生活中起着重要的作用。所以语音情感识别的研究显得尤为重要,它是计算机理解人类情感的关键,是实现智能化人机交互的前提。文章主要研究基于语音情感的心理咨询与性格分析算法,可以分为3个部分:语音情感信号预处理、语音情感特征参数的提取、构建情感识别系统,从而进行语音情感的预测,然后给出性格分析结果和心理咨询建议。 Speech signals convey semantic information while conveying emotional information, and emotion plays an important role in human communication and life. Therefore, the study of speech emotion recognition is particularly important. It is the key to computer understanding of human emotions and the prerequisite for intelligent human-computer interaction. The main work of this paper is based on the research of psychological counseling and personality analysis algorithms. It can be divided into three parts. The first part is the preprocessing of speech emotion signals, the second part is the extraction of speech emotion feature parameters, and the last part is to construct emotions. The system is identified to predict speech emotions, and then personality analysis results and psychological counseling recommendations are given.
作者 余倩 洪兆金 翟其俊 乔方圆 赵力 Yu Qian;Hong Zhaojin;Zhai Qijun;Qiao Fangyuan;Zhao Li(School of Information Science and Engineering,Southeast University,Nanjing,Jiangsu 211189,China)
出处 《信息化研究》 2019年第5期27-31,共5页 INFORMATIZATION RESEARCH
基金 国家自然科学基金项目(61673108)
关键词 语音情感识别 MEL频率倒谱系数 预处理 神经网络 speech emotion recognition MFCC preprocessing neural network
  • 相关文献

参考文献2

二级参考文献38

  • 1Litman D,Forbes K.Recognizing emotions from student speech in tutoring dialogues[C]∥Proceeding of IEEE Workshop on Automatic Speech Recognition and Understanding(ASRU).2003:25-30.
  • 2France D J,Shiavi R G,Silverman S,et al.Acoustical properties of speech as indicators of depression and suicidal risk [J].IEEE Trans.on Biomedical Engineering,2000,47(7):829-837.
  • 3Yang N,Muraleedharan R,Kohl J,et al.Speech-based emotion classification using multiclass SVM with hybrid kernel and thresholding fusion[C]∥Proceedings of the 4th IEEE workshop on Spoken Language Technology(SLT),2012.Miami,Florida,2012:455-460.
  • 4Schuller B,Rigoll G,Lang M.Speech emotion recognition combining acoustic features and linguistic information in a hybrid support vector machine-belief network architecture[C]∥Proceedings of the ICASSP.2004,1:577-580.
  • 5Ayadi M,Kamel M,Karray F.Survey on speech emotion recognition:Features,classification schemes,and databases[J].Pattern Recognition,2011,44(3):572-587.
  • 6Zeng Z,Pantic M,Rosiman G I,et al.A survey of affect recognition methods:Audio,visual,and spontaneous expressions[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,2009,1(1):39-58.
  • 7Kockmann M,Burget L,Cemocky J.Application of speaker and language independent state-of-the-art techniques for emotion recognition[J].Speech Communication,2011,53(9):1172-1185.
  • 8Chen L,Mao X,Xue Y-L,et al.Speech Emotion Recognition:Features and Classification Models[J].Digital Signal Proces-sing,2012,22(6):1154-1160.
  • 9Zhang B Y,Yu J Q,Tang J F,et al.Movie background music classification foremotion [J].Computer Science,2013,0(12):37-40,4.
  • 10Schuller B,Reiter S,Mueller R,et al.Speaker-independentspeech emotion recognition by ensemble classification[C]∥Proceedings of IEEE International Conference on Multimedia and Expo(ICME).Amsterdam,Netherlands,2005:864-867.

共引文献10

同被引文献17

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部