期刊文献+

动态惯性权重粒子群算法研究与实现 被引量:1

Research and Implementation of Dynamically Changing Weighted Particle Swarm Optimization
下载PDF
导出
摘要 为提高基本粒子群优化算法(PSO)的收敛性能,并达到一定收敛率和精度,提出了动态惯性权重粒子群算法(DCWPSO),给出了改进算法在采用固定控制参数取值时,参数的最佳取值范围,并应用测试函数进行仿真研究。和以往文献中多种改进的PSO算法进行比较,仿真分析表明:动态惯性权重粒子群算法(DCWPSO)加快了收敛速度,提高了解的精度,这种改进的粒子群优化算法在解决实际优化问题中很有潜力,并通过神经网络仿真研究,深入研究分析了原始算法PSO和DCWPSO算法在优化不同结构网络中控制的作用。 To improve the convergence performance of Particle Swarm Optimization(PSO) and achieve certain convergence rate and accuracy, dynamically changing weighted particle swarm optimization(DCWPSO) was proposed, and the best value range of parameters was given while fixed control parameters were adopted in the improved algorithm. The simulation was researched by using the test function and compared with a variety of improved PSO algorithms in previous literature, which indicated DCWPSO quickened the tempo of convergence, improved the accuracy of the solution and had great potential in solving practical optimization problems. Meanwhile, through the research on neural network simulation, the original PSO and how DCWPSO algorithms play an important role in optimizing the control of different structured networks were studied and analyzed deeply.
作者 李亮 Li Liang(State Grid Corporation Tongliao Power Supply Company Naiman Power Supply Branch,Tongliao 028300,China)
出处 《信息化研究》 2019年第5期37-40,共4页 INFORMATIZATION RESEARCH
关键词 基本粒子群算法 动态惯性权重粒子群算法 仿真分析 神经网络 PSO DCWPSO simulation analysis neural network
  • 相关文献

参考文献2

二级参考文献20

  • 1刘洪波,王秀坤,谭国真.粒子群优化算法的收敛性分析及其混沌改进算法[J].控制与决策,2006,21(6):636-640. 被引量:62
  • 2高尚,汤可宗,蒋新姿,杨静宇.粒子群优化算法收敛性分析[J].科学技术与工程,2006,6(12):1625-1627. 被引量:19
  • 3盛跃宾,陈定昌,穆森,任强,张朝阳.有等式约束优化问题的粒子群优化算法[J].计算机工程与设计,2006,27(13):2412-2413. 被引量:19
  • 4韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 5[1]Shi Yuhui,Eberhart R C,Chen Yaobin.Design of Evolutionary Fuzzy Expert System[A].Proceeding of 1997 Artificial Neural Networks in Engineering Conferenc[C].St.Louis,November,1997.
  • 6[2]Fukuyama Y.Fundamental of Particle Swarm Techniques[A].Lee K Y,El-sharkaei M A.Modern Heuristic Optimization Techniques with Applications to Power Systems[C].NJ:IEEE Press IEEE Power Engineering Society,2002:45-51.
  • 7[3]Shi Y,Eberhart R C.A Modified Particle Swarm Optimizer[A].Proceedings of IEEE International Conference on Evolutionary Computation 1998[C].Piscataway,NJ:IEEE Press,1998:69-73.
  • 8[4]Eberhart R C,Shi Y.Particle Swarm Optimization:developments,applications and resources[C]//Proceedings the 2001 Congress on Evolutionary Computation,Piscataway,NJ:IEEE Press,2001:81-86.
  • 9[6]He S,W.QH,Wen J Y,et at.A Particle Swarm Optimizer with Passive Congregation[J].BioSystems,2004,78(1-3):135-147.
  • 10[7]Ji Mingjun,Tang Huanwen.Application of Chaos in Simulated Annealing[J].Chaos,Solitona and Fractals,2004,21(4),933-941.

共引文献14

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部