期刊文献+

Effect of Ag on the Microstructure,Mechanical and Bio-corrosion Properties of Fe–30Mn Alloy

Effect of Ag on the Microstructure,Mechanical and Bio-corrosion Properties of Fe–30Mn Alloy
原文传递
导出
摘要 In the current work, biodegradable Fe–30 Mn– X Ag( X = 1, 2, 5, 10 wt%) alloys were prepared by the rapid solidifi cation with copper-mold-casting technology. Phase analysis demonstrates that Fe–30 Mn– X Ag alloys consist of austenite γ phase with a fcc structure and martensite ε phase with a hcp structure. The yield strength of the samples increases with increasing Ag contents. Compared with Fe–30 Mn alloy, the degradation rates of Fe–30 Mn– X Ag in Hank’s solution are signifi cantly improved. Cytotoxicity evaluation reveals that the Fe–30 Mn–1 Ag and Fe–30 Mn–2 Ag alloys perform less toxicity on the Human Umbilical Vein Endothelial Cells(HUVEC), while Fe–30 Mn–5 Ag and Fe–30 Mn–10 Ag alloys perform no toxicity on it. The contact angles of deionized water on the Fe–30 Mn– X Ag alloy surface were ranged from 55° to 69°, which is benefi cial to the adhesion and growth of the cells. Besides, the addition of Ag leads to a much lower M/H slope, particularly for the Fe–30 Mn–5 Ag alloy exhibiting a non-magnetic property as SS316 L. Therefore, the present Fe–30 Mn– X Ag alloys would be potential candidates for degradable metals. In the current work, biodegradable Fe–30 Mn– X Ag( X = 1, 2, 5, 10 wt%) alloys were prepared by the rapid solidifi cation with copper-mold-casting technology. Phase analysis demonstrates that Fe–30 Mn– X Ag alloys consist of austenite γ phase with a fcc structure and martensite ε phase with a hcp structure. The yield strength of the samples increases with increasing Ag contents. Compared with Fe–30 Mn alloy, the degradation rates of Fe–30 Mn– X Ag in Hank’s solution are signifi cantly improved. Cytotoxicity evaluation reveals that the Fe–30 Mn–1 Ag and Fe–30 Mn–2 Ag alloys perform less toxicity on the Human Umbilical Vein Endothelial Cells(HUVEC), while Fe–30 Mn–5 Ag and Fe–30 Mn–10 Ag alloys perform no toxicity on it. The contact angles of deionized water on the Fe–30 Mn– X Ag alloy surface were ranged from 55° to 69°, which is benefi cial to the adhesion and growth of the cells. Besides, the addition of Ag leads to a much lower M/H slope, particularly for the Fe–30 Mn–5 Ag alloy exhibiting a non-magnetic property as SS316 L. Therefore, the present Fe–30 Mn– X Ag alloys would be potential candidates for degradable metals.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第11期1337-1345,共9页 金属学报(英文版)
基金 financially supported by the National Natural Science Foundation of China (No. 51671162) the Fundamental Research Funds for the Central Universities (No. XDJK2017B054) supported in part by Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2015jcyj BX0107) the Venture and Innovation Support Program for Chongqing Overseas Returnees (No. cx2017086)
关键词 BIODEGRADABLE METALS FE-BASED ALLOY CORROSION behavior BIOCOMPATIBILITY Biodegradable metals Fe-based alloy Corrosion behavior Biocompatibility
  • 相关文献

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部