摘要
针对绝大多数用户消费习惯对地理位置的敏感性,以及推荐过程中的"长尾效应",提出融合位置信息和物品流行度的协同过滤算法。对传统的协同过滤算法作出2点改进:第一,将用户兴趣偏好与位置偏好相结合,提出一种新的基于地理位置的用户相似度计算方法;第二,在预测评分时,引入物品流行度权重,合理地调整流行物品和长尾物品的推荐期望值。使用Foursquare数据集作为实验数据集,与相关算法进行对比实验。结果表明,改进算法能有效提高推荐的精度和推荐结果的多样性。
Aiming at the sensitivity of most users’ consumption habits to the geographical location and the "long tail effect" in the recommendation process, a collaborative filtering algorithm is proposed combining the location information and the item popularity. In this study, two improvements are made to the conventional collaborative filtering algorithm. At first, a new calculating method of user similarity based on the geographic location is proposed by combining the preference of user interest and the position preference. Then, in predicting, the recommended expectations of the popular items and the long-tailed items are reasonably adjusted by introducing the popularity of goods weight. The Foursquare data set is used as the experimental data set in this work, and experiments are compared with related algorithms. The experimental results show that the improved algorithm can effectively improve the precision and the diversity of the recommended results.
作者
谢修娟
莫凌飞
李香菊
陈永
XIE Xiujuan;MO Lingfei;LI Xiangju;CHEN Yong(Department of Computer Engineering,Southeast University Chengxian College,Nanjing 210088,China;College of Instrument Science and Engineering,Southeast University,Nanjing 211189,China;Action Cloud Information Technology Co.,Ltd.,Nanjing 211189,China)
出处
《河海大学学报(自然科学版)》
CAS
CSCD
北大核心
2019年第6期568-573,共6页
Journal of Hohai University(Natural Sciences)
基金
国家自然科学基金(61603091)
江苏省教育信息化研究立项课题(20180054)
全国高等院校计算机基础教育研究会教学研究项目(2018-AFCEC-210)
关键词
协同过滤
地理位置
推荐多样性
兴趣偏好
位置偏好
物品流行度
collaborative filtering
geographic location
recommended diversity
interest preference
position preference
item popularity