期刊文献+

融合位置信息和物品流行度的协同过滤算法 被引量:3

Collaborative filtering algorithm combining location information and item popularity
下载PDF
导出
摘要 针对绝大多数用户消费习惯对地理位置的敏感性,以及推荐过程中的"长尾效应",提出融合位置信息和物品流行度的协同过滤算法。对传统的协同过滤算法作出2点改进:第一,将用户兴趣偏好与位置偏好相结合,提出一种新的基于地理位置的用户相似度计算方法;第二,在预测评分时,引入物品流行度权重,合理地调整流行物品和长尾物品的推荐期望值。使用Foursquare数据集作为实验数据集,与相关算法进行对比实验。结果表明,改进算法能有效提高推荐的精度和推荐结果的多样性。 Aiming at the sensitivity of most users’ consumption habits to the geographical location and the "long tail effect" in the recommendation process, a collaborative filtering algorithm is proposed combining the location information and the item popularity. In this study, two improvements are made to the conventional collaborative filtering algorithm. At first, a new calculating method of user similarity based on the geographic location is proposed by combining the preference of user interest and the position preference. Then, in predicting, the recommended expectations of the popular items and the long-tailed items are reasonably adjusted by introducing the popularity of goods weight. The Foursquare data set is used as the experimental data set in this work, and experiments are compared with related algorithms. The experimental results show that the improved algorithm can effectively improve the precision and the diversity of the recommended results.
作者 谢修娟 莫凌飞 李香菊 陈永 XIE Xiujuan;MO Lingfei;LI Xiangju;CHEN Yong(Department of Computer Engineering,Southeast University Chengxian College,Nanjing 210088,China;College of Instrument Science and Engineering,Southeast University,Nanjing 211189,China;Action Cloud Information Technology Co.,Ltd.,Nanjing 211189,China)
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第6期568-573,共6页 Journal of Hohai University(Natural Sciences)
基金 国家自然科学基金(61603091) 江苏省教育信息化研究立项课题(20180054) 全国高等院校计算机基础教育研究会教学研究项目(2018-AFCEC-210)
关键词 协同过滤 地理位置 推荐多样性 兴趣偏好 位置偏好 物品流行度 collaborative filtering geographic location recommended diversity interest preference position preference item popularity
  • 相关文献

参考文献9

二级参考文献93

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 3Breese J. S, Heckerman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering [C]//Proceedings of the 14^th Conference on Uncertainty in Artificial Intelligence. 1998. 43-52.
  • 4Sarwar B,'Karypis G, Konstan J, Riedl J. Item based collaborative filtering recommendation algorithms [C]//Proceedings of the Tenth International World Wide Web Conference, 2001, 285-295.
  • 5Gui-Rong Xue, Chenxi Lin, Qiang Yang. Scalable Collaborative Filtering Using Cluster-based Smoothing [C]//Proeeeding of the 28th Annual International ACM SIGIR Conference, in Salvador, Brazil, 2005.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Application of dimensionality reduction in recommender systems: A case study [C]//ACM WebKDD Web Mining for E- Commerce Workshop, 2000.
  • 7Ungar L. H, Foster D. P. Clustering Methods for Collaborative Filtering [C]//Workshop on Recommender Systems at the 15th National Conference on On Artificial Intelligence. 1998.
  • 8Aggarwal C C. On the effects of dimensionality reduction on high dimensional similarity search [C]//Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART. Symposium on Principles of Database Systems, 2001, 256-266.
  • 9Sarwar B, Karypis G, Konstan J, Riedl J. Item-based collaborative filtering recommendation algorithms [C]//Proceedings of the Tenth International World Wide Web Conference, 2001, 285-295.
  • 10Gui Rong Xue, Hua-Jun Zeng. Optimizing Web Search Using Web Click-through Data [C]//CIKM' 04, November 8-13, Washington, DC, USA: 2004.

共引文献278

同被引文献18

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部