期刊文献+

基于混合过滤的图书推荐系统的设计与效能评估 被引量:2

Design and Efficiency Evaluation of Book Recommendation System Based on Hybrid Filtering
下载PDF
导出
摘要 为了提升图书推荐服务质量,提出了将协同过滤、基于内容的过滤以及关联规则挖掘进行整合后的混合过滤图书推荐系统,并详细阐述了混合过滤荐书系统的设计方案。效能实验显示,该混合过滤荐书系统比单一的协同过滤以及基于内容的过滤在效能上具有明显的改善。 In order to improve the quality of book recommendation service,this paper puts forward a hybrid filtering book recommendation system by integrating collaborative filtering,content-based filtering and association rule mining,and elaborates design scheme of the hybrid filtering book recommendation system.The efficiency experimental results show that the hybrid filtering book recommendation system has better efficiency than single collaborative filtering and content-based filtering.
作者 邝耿力 KUANG Gengli
机构地区 肇庆市图书馆
出处 《图书情报导刊》 2019年第11期32-37,共6页 Journal of Library and Information Science
基金 2019年广东省图书文化信息协会科研课题“利用机器学习优化馆藏推荐系统的应用研究”(项目编号:GDTWKT2019-25)
关键词 图书推荐系统 混合过滤 关联规则 效能评估 book recommendation system hybrid filtering association rule performance evaluation
  • 相关文献

参考文献3

二级参考文献42

  • 1李树青,崔北亮.基于个性化信息推荐服务的Web搜索引擎技术综述[J].情报杂志,2007,26(8):98-101. 被引量:12
  • 2Liu JG, Zhou T, Wang BH. Research progress of personalized recommendation system. Progress in Natural Science, 2009,19(1): 1-15 (in Chinese with English abstract).
  • 3Ma H, Yang HX, Lyu MR, King I. SoRec: Social recommendation using probabilistic matrix factorization. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2008. 978-991. [doi: 10.1145/1458082.1458205].
  • 4Ma H, King I, Lyu MR. Learning to recommend with social trust ensemble. In: Proc. of the Annual Int’l ACM SIGIR Conf. on Research and Development in Information Retrieval. ACM Press, 2009. 203-210. [doi: 10.1145/1571941.1571978].
  • 5Guo L, Ma J, Chen ZM, Jiang HR. Learning to recommend with social relation ensemble. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2012. 2599-2602. [doi: 10.1145/2396761.2398701].
  • 6Jamali M, Ester M. TrustWalker: A random walk model for combining trust-based and item-based recommendation. In: Proc. of the ACM SIGKDD Conf. on Knowledge Discovery and Data Mining. ACM Press, 2009. 397-405. [doi: 10.1145/1557019. 1557067].
  • 7Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks. In: Proc. of the ACM Conf. on Recommender Systems. ACM Press, 2010. 135-142. [doi: 10.1145/1864708.1864736].
  • 8Zhou TC, Ma H, King I, Lyu MR. UserRec: A user recommendation framework in social tagging systems. In: Proc. of the 24th AAAI Conf. on Artificial Intelligence. AAAI Press, 2010. 1486-1491.
  • 9Wu L, Chen EH, Liu Q, Xu LL, Bao TF, Zhang L. Leveraging tagging for neighborhood-aware probabilistic matrix factorization. In: Proc. of the ACM Int’l Conf. on Information and Knowledge Management. ACM Press, 2012. 1854-1858. [doi: 10.1145/ 2396761.2398531].
  • 10Liu Q, Chen EH, Xiong H, Ding CHQ, Chen J. Enhancing collaborative filtering by user interests expansion via personalized ranking. IEEE Trans, on Systems, Man and Cybernetics—B, 2012,42(1):218-233. [doi: 10.1109/TSMCB.2011.2163711].

共引文献166

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部