期刊文献+

不同方法制备石墨类复合材料及其电化学性能 被引量:1

Preparation of graphite composite materials by different methods and their electrochemical performance
下载PDF
导出
摘要 以氧化石墨烯(GO)、石墨相氮化碳(g-C3N4)为前驱体,分别采用水热法、微波法、煅烧法制备石墨烯(RGO)/g-C3N4复合材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶转换红外光谱(FT-IR)和热重(TG)等测试手段表征材料的表面微观结构和还原程度,采用循环伏安(CV)、恒流充放电(GCD)及电化学交流阻抗(EIS)测试复合材料的电化学性能。结果表明:以煅烧法制备的复合材料,结晶度较高,孔结构分布均匀,复合材料循环稳定性较好,当电流密度为0.2 A/g时,电极材料的比电容为724.53 F/g,显现出良好的电化学性能。 Graphene(RGO)/g-C3N4 composites were prepared by hydrothermal method,microwave method and calcination method using graphene oxide(GO)and graphite phase carbon nitride(g-C3N4)as precursors.The surface microstructure and degree of reduction of the material were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FT-IR)and thermogravimetry(TG).The electrochemical properties of the composite were tested by cyclic voltammetry(CV),galvanostatic charge/discharge(GCD)and electrochemical impedance spectroscopy(EIS).The results show that the composites prepared by calcination method have higher crystallinity,uniform pore structure distribution and good cycle stability,when the current density is 0.2 A/g,and the specific capacitance of the electrode material is 724.53 F/g,which shows good electrochemical performance.
作者 刘斌 张永强 赫文秀 崔金龙 LIU Bin;ZHANG Yong-qiang;HE Wen-xiu;CUI Jin-long(School of Chemistry and Chemical Engineering,University of Inner Mongolia University of Science and Technology,Baotou Inner Mongolia 014010,China)
出处 《电源技术》 CAS 北大核心 2019年第11期1863-1866,共4页 Chinese Journal of Power Sources
基金 国家自然科学基金(21766024,51864039)
关键词 煅烧法 微波法 电极材料 石墨烯 石墨相氮化碳 calcination method microwave method electrode material graphene graphite phase carbon nitride
  • 相关文献

参考文献4

二级参考文献90

  • 1高飞,吕晋军,刘维民.碳化物衍生碳与石墨的摩擦磨损性能比较[J].摩擦学学报,2007,27(2):102-105. 被引量:5
  • 2Schedin F,Geim A K,Morozov S V,et al.Detection of individual gas molecules adsorbed on graphene[J].Nat Mater,2007,6(9):652-655.
  • 3Yoo E,Okata T,Akita T,et al.Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface[J].Nano Lett,20(19,9(6):2255-2259.
  • 4Qu L T,Liu Y,Back J-B,et al.Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J].ACS Nano,2010,4(3):1321-1326.
  • 5Sun Y Q,Li C,Xu Y X,et al.Chemically convened graphene as substrate for immobilizing and enhancing the activity of a polymeric catalyst[J].Chem Commun,2010,46(26):4740-4742.
  • 6Wu Q,Xu Y X,Yao Z Y,et al.Supercapacitors based on flexible graphene/polyaniline nanofiber composite films[J].ACS Nano,2010,4(4):1963-1970.
  • 7Stoller M D,Park S,Zhu Y W,et al.Graphene-based ultracapacitors[J].Nano Lett,2008,8(10):3498-3502.
  • 8Hu Y H,Wang H,Hu B.Thinnest two-dimensional nanomaterial-graphene for solar energy[J].ChemSusChem,2010,3(7):782-796.
  • 9Xu Y X,Bai H,Lu G W,et al.Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets[J].J Am Chem Soc,2008,130(181:5856-5857.
  • 10Chen H,Müller M B,Gilmore K J,et al.Mechanically strong,electrically conductive,and biocompatible graphene paper[J].Adv Mater,2008,20(18):3557-3561.

共引文献97

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部