摘要
鉴于汽车冷却风扇的工作性能直接影响发动机舱的散热性能,本研究以全面提升散热器入口进风量和冷却风扇有效功率为优化目标,以实车为例,进行了冷却风扇轴向伸入距离、风扇与风扇罩径向间隙和风扇旋转中心偏移距离三个设计参数进行优化。首先采用计算流体力学(CFD)方法,单因素分析各个设计参数对散热器入口进风量和冷却风扇有效功率的影响规律。然后采用正交试验方法,对发动机舱散热性能的影响因素进行了研究,发现风扇与风扇罩径向间隙的变化相对于其他因素对发动机舱散热性能的影响更为显著,并获得了风扇设计参数的最佳组合方案。最后经过仿真验证结果表明,与原车模型相比,优化后在爬坡工况下散热器进风量提升了10.90%,风扇进风量提升了8.81%,风扇有效功率提升了12.22%,发动机表面温度降低了1.23℃,其结果有效地改善了发动机舱的散热性能。
In view of the performance of the car cooling fan directly affects the heat dissipation performance of the engine compartment.The study aims to optimize the overall improvement of the inlet air volume of the radiator and the effective power of the cooling fan and takes the actual vehicle as an example to optimize the axial extension distance of the cooling fan,the radial clearance of the fan and the fan cover and the center of rotation of the fan.Firstly,the computational fluid dynamics(CFD)method is used to analyze the influence of various design parameters on the intake air volume of the radiator and the effective power of the cooling fan.Then the orthogonal test method is used to study the factors affecting the heat dissipation performance of the engine compartment.It is found that the radial clearance of the fan and the fan cover has a more significant influence on the heat dissipation performance of the engine compartment than other factors,and the fan design parameters with the best combination of options are obtained.Finally,the simulation results show that compared with the original model,the air intake of the radiator is increased by 10.90%,the air intake of the fan is increased by 8.81%,the effective power of the fan is increased by 12.22%,the surface temperature of the engine is increased by 1.23℃,and the result effectively improved the heat dissipation performance of the engine compartment.
作者
张涵
韦流权
刘康
鲁力
ZHANG Han;LIU Kang;LU Li(SGMW Corporation,Guangxi Liuzhou 54007,China;Wuhan University of Technology,Hubei Wuhan 430070,China)
出处
《汽车科技》
2019年第6期58-64,共7页
Auto Sci-Tech
关键词
发动机舱
冷却风扇
CFD数值分析
正交试验优化
Engine Compartment
Cooling Fan
CFD Numerical Analysis
Orthogonal Test Optimization