摘要
针对在变形监测结果中高频噪声、粗差较多,以及普通卡尔曼滤波在模型建立不准确情况下易产生数据发散的问题,提出一种自适应卡尔曼滤波方法:在普通的卡尔曼滤波算法中增加观测噪声方差缩放因子以及参考方差动态计算窗口;并根据前期监测结果中的残差方差动态调整卡尔曼滤波中的测量误差方差阵,达到自适应卡尔曼滤波的效果。实验结果表明,该方法的滤波结果相较普通卡尔曼滤波能够剔除结果中的粗差,并且能够保留被监测物的真实位移,反应速度较普通卡尔曼滤波也有很大提高。
Aiming at the problems that there are a lot of high frequency noises and gross errors in the deformation monitoring,and traditional Kalman filter is easy to generate data divergence when the model establishment is not accurate,the paper proposed an adaptive Kalman filtering method:the observation noise variance scaling factor and the reference variance dynamic calculation window were added into traditional Kalman filter;and the measurement error variance matrix in Kalman filtering was dynamically adjusted according to the residual variance of previous monitoring result for the filtering effect of the adaptive Kalman filtering.Experimental result showed that,compared with traditional method,the proposed method could eliminate the gross errors and retain the real displacement of the measured objects with higher reflection speed.
作者
雷孟飞
孔超
周俊华
LEI Mengfei;KONG Chao;ZHOU Junhua(Hunan Lianzhi Bridge and Tunnel Technology Co.Ltd.,Changsha 410073,China)
出处
《导航定位学报》
CSCD
2019年第4期75-79,共5页
Journal of Navigation and Positioning
关键词
变形监测
高频噪声
粗差
卡尔曼滤波
deformation monitoring
high frequency noise
gross error
Kalman filtering