摘要
体积模量是理想弹性体固有的材料属性,本不应随线弹性体所处的应力空间而变化,但体积模量的表达出现了二维与三维的不一致,且在二维中,它还出现了平面应力状态和平面应变状态各不相同的现象。从线弹性本构理论出发,找出了体积模量随应力空间维数变化的原因,系体积模量在不同维应力空间存在截然不同的定义所致,从而提出了使其在各维应力空间保持一致的解决办法。
Bulk modulus is an inherent material property of idealized elastomer which should maintain the same expression in stress space of all dimension. However, there is an obvious difference for the expression of bulk modulus between 2 D and 3 D, moreover, the expression of the bulk modulus in plane stress is also different from it in plane strain. Based on the linear elastic constitutive theory, the ultimate cause of the difference is found out that the different definitions of bulk modulus are adopted in 2 D and 3 D. Then a method is suggested to keep bulk modulus consistent in stress space of all dimension.
作者
黄小华
朱嘉正
金艳丽
HUANG Xiaohua;ZHU Jiazheng;JIN Yanli(College of Civil Engineering and Architecture,Guangxi University,Nanning 530004,China)
出处
《沈阳师范大学学报(自然科学版)》
CAS
2019年第5期444-447,共4页
Journal of Shenyang Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(51569004)
关键词
体积模量
平面应力
平面应变
理想
线弹性
bulk modulus
plane stress
plane strain
idealized
linear elastic