期刊文献+

基于T-S模糊模型的CSTR系统广义预测控制 被引量:4

Generalized Predictive Control of CSTR System Based on T-S Fuzzy Model
下载PDF
导出
摘要 模糊预测控制将模糊与预测2种思想相结合,已经成功应用于工控领域。连续搅拌反应釜是化工生产过程中典型的非线性系统,传统控制方法难以满足其控制精度要求。本文提出一种模糊广义预测控制方法。采用改进的模糊划分聚类算法对T-S模糊模型的前件参数进行辨识,仿真证明该算法的辨识效果优于原始模糊聚类算法;结合带有遗忘因子的递推最小二乘法对模糊模型的后件参数进行辨识。采用广义预测控制算法与PID算法分别对连续搅拌反应釜系统进行仿真验证,仿真结果证明了本文方法的有效性。 Fuzzy predictive control combines both fuzzy and predictive ideas and has been successfully applied in the field of industrial control.The continuous stirred tank reactor(CSTR) is a typical nonlinear system in the chemical production process,and the traditional control method is difficult to meet the control accuracy requirements. In this paper,a fuzzy generalized predictive control method is proposed. The improved fuzzy partitioning clustering algorithm is used to identify the antecedent parameters of the Takagi-Sugeno(T-S) fuzzy model. The simulation result shows that the proposed algorithm is better than the original fuzzy clustering algorithm. At the same time,the recursive least squares method with forgetting factor is used to identify the post-parameter parameters of the fuzzy model.The generalized predictive control algorithm and PID algorithm are used to verify the CSTR system,simulation results demonstrate the effectiveness of the proposed method.
作者 许娣 佃松宜 高钰凯 XU Di;DIAN Song-yi;GAO Yu-kai(School of Electrical Engineering,Sichuan University,Chengdu 610065,China)
出处 《自动化与仪表》 2019年第11期77-82,共6页 Automation & Instrumentation
关键词 广义预测控制 连续搅拌反应釜 非线性 T-S模糊模型 generalized predictive control continuous stirred tank reactor(CSTR) nonlinear Takagi-Sugeno(T-S) fuzzy model
  • 相关文献

参考文献2

二级参考文献58

  • 1GARCIA C E, PRETT D M, MORARI M. Model predic- tive control:theory and practice--a survey[J]. Automati- ca, 1989,25(3) :335-348.
  • 2MAYNE D Q, RAWLINGS J B, RAO C V, et al. Con- strained model predictive control : Stability and optimality [J]. Automatica, 2000,36(6) : 789-814.
  • 3KWON W H, PEARSON A E. On feedback stabilization of time-varying discrete linear systems[J]. IEEE Transac- tions on Automatic Control, 1978,23 (3) :479-481.
  • 4SCOKAERT P O M, CLARKE D W. Stabilizing proper- ties of constrained predictive control[J]. IEEE Proceed-ings: Control Theory and Applications, 1994, 141 (5) : 295-304.
  • 5CLARKE D W, SCATTOLINI R. Constrained receding- horizon predictive control[J]. IEEE Proceedings: Control Theory and Applications, 1991,138 (4) : 347-354.
  • 6KEERTHI S S, GILBERT E G. Optimal infinite-horizon feedback laws for a general class of constrained discrete- time systems: stability and moving-horizon approxima- tions[J]. Journal of Optimization Theory and Applica- tions, 1988,57(2) :265-293.
  • 7BITMEAD R R, GEVERS M, WERTZ V. Adaptive opti- mal control: the thinking man' s GPC[M]. New Jersey: Prentice-Hall, 1990 : 157-173.
  • 8MICHALSKA H, MAYNE D Q. Robust receding horizon control of constrained nonlinear systems[J]. IEEE Trans- actions on Automatic Control, 1993,38(11 ) : 1623-1633.
  • 9CUTLER C R, RAMAKER B L. Dynamic matrix con- trol--a computer control algorithm[C]//Proceedings of the Joint Automatic Control Conference. San Francisco, USA: AACC, 1980.
  • 10ROUHANI R, MEHRA R K. Model algorithmic control (MAC) : basic theoretical properties[J]. Automatica, 1982, 18(4):401-414.

共引文献9

同被引文献34

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部