期刊文献+

基于t-SNE的PQD特征提取可视化仿真分析 被引量:2

Visual Simulation of PQD Feature Extraction Method Based on t-SNE
下载PDF
导出
摘要 针对电能质量扰动(power quality disturbance,PQD)的复杂性,提出了一种基于t分布随机近邻嵌入(t-distributed stochastic neighbor embedding,t-SNE)流行学习算法的PQD特征提取方法。首先,建立了常见的PQD信号数学模型,并考虑了扰动参数和噪声的影响;其次,采用小波分解得到信号的小波能量向量构造原始特征集;最后,通过t-SNE算法进行二次特征提取,得到保持样本高维空间结构的,敏感度高且聚类性好的低维特征。仿真实验结果证明了提出的基于t-SNE的特征提取方法在PQD分析中的有效性。 In view of the complexity of power quality disturbance(PQD),this paper proposed a PQD feature extraction method based on t-distributed stochastic neighbor embedding(t-SNE).Firstly,considering the influence of random parameters and noise,we constructed typical disturbances models.Then,the wavelet energy features of PQD were extracted by wavelet transform to construct the original feature set.Finally,we applied t-SNE method to compress the sample features into 3-dimension features,which keep low dimensional structure in high dimensional space and make a rough recognition of PQD.The simulation proved the effectiveness of the PQD feature extraction method based on t-SNE.
作者 彭跃辉 车辚辚 PENG Yuehui;CHE Linlin(State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University,Beijing 102206,China;School of Electrical and Electronic Engineering,North China Electric Power University,Baoding 071003,China)
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2019年第6期36-40,57,共6页 Journal of North China Electric Power University:Natural Science Edition
关键词 电能质量扰动 t分布随机近邻嵌入 特征提取 可视化分析 power quality disturbance t-distributed stochastic neighbor embedding features extraction visualization analysis
  • 相关文献

参考文献12

二级参考文献115

  • 1周智,朱永生,张优云,袁幸,师浩浩.基于EMD间隔阈值消噪与极大似然估计的滚动轴承故障诊断方法[J].振动与冲击,2013,32(9):155-159. 被引量:9
  • 2尚文倩,黄厚宽,刘玉玲,林永民,瞿有利,董红斌.文本分类中基于基尼指数的特征选择算法研究[J].计算机研究与发展,2006,43(10):1688-1694. 被引量:38
  • 3赵凤展,杨仁刚.基于短时傅里叶变换的电压暂降扰动检测[J].中国电机工程学报,2007,27(10):28-34. 被引量:128
  • 4罗会兰,孔繁胜,李一啸.聚类集成中的差异性度量研究[J].计算机学报,2007,30(8):1315-1324. 被引量:36
  • 5McCandless D. Information Is Beautiful. Cork, Republic of Ireland : Collins, 2010.
  • 6Alfaro C A, Aydin B, Valencia C E, et al. Dimension Reduction in Principal Component Analysis for Trees. Computational Statistics and Data Analysis, 2014, 74 : 157-179.
  • 7Ye Q L, Zhao C X, Zhang H F, et al. Recursive " Concave-Con- vex" Fisher Linear Discriminant with Applications to Face, Hand- written Digit and Terrain Recognition. Pattern Recognition, 2012, 45 ( 1 ) : 54-65.
  • 8Xiao Y C, Wang H G, Xu W L, et al. L1 Norm Based KPCA for Novelty Detection. Pattern Recognition, 2013, 46( 1 ) : 389-396.
  • 9Liu J, Zhao F, Liu Y. Learning Kernel Parameters for Kernel Fisher Diseriminant Analysis. Pattern Recognition Letters, 2013, 34 (9) : 1026-1031.
  • 10Jin L, Huang Y. A Particle Swarm Optimization-Neural Network Prediction Model for Typhoon Intensity Based on Isometric Mapping Algorithm//Proc of the 5th International Joint Conference on Com- putational Sciences and Optimization. Harbin, China, 2012:857-861.

共引文献261

同被引文献14

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部