期刊文献+

Corrosion mechanism of magnesia-chromite refractories by ZnO-containing fayalite slags: Effect of funnel glass addition 被引量:1

Corrosion mechanism of magnesia-chromite refractories by ZnO-containing fayalite slags: Effect of funnel glass addition
下载PDF
导出
摘要 An efficient approach for lead extraction from waste funnel glass through the lead smelting process has been proposed. To clarify the effect of funnel glass addition on the degradation of magnesia-chromite refractories by ZnO-containing fayalite slag, the corrosion behavior of magnesia-chromite refractories in lead smelting slags with different funnel glass additions from 0wt% to 40wt% was tested. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) was used to acquire the microstructural information of the worn refractory samples. Experimental results showed that the corrosion of magnesia-chromite refractory consisted predominantly of the dissolution of MgO into slag. ZnO and FeO reacted with periclase and chromite to form (Zn,Fe,Mg)O solid solution and (Zn,Fe,Mg)(Fe,Al,Cr)2O4 spinel, respectively. With the addition of funnel glass, the solubility of MgO increased whereas ZnO levels remained stable, thereby resulting in a reduced Mg content and an elevated Zn and Fe content in the (Zn,Fe,Mg)O solid solution and the (Zn,Fe,Mg)(Fe,Al,Cr)2O4 spinel. Considering the stability of the (Zn,Fe,Mg)O solid solution layer and the penetration depth of the slag, the optimal funnel glass addition for lead smelting was found to be 20wt%. An efficient approach for lead extraction from waste funnel glass through the lead smelting process has been proposed. To clarify the effect of funnel glass addition on the degradation of magnesia-chromite refractories by ZnO-containing fayalite slag, the corrosion behavior of magnesia-chromite refractories in lead smelting slags with different funnel glass additions from 0 wt% to 40 wt% was tested. Scanning electron microscopy with energy dispersive X-ray spectroscopy(SEM-EDS) was used to acquire the microstructural information of the worn refractory samples. Experimental results showed that the corrosion of magnesia-chromite refractory consisted predominantly of the dissolution of MgO into slag. ZnO and FeO reacted with periclase and chromite to form(Zn,Fe,Mg)O solid solution and(Zn,Fe,Mg)(Fe,Al,Cr)2O4 spinel, respectively. With the addition of funnel glass, the solubility of MgO increased whereas ZnO levels remained stable, thereby resulting in a reduced Mg content and an elevated Zn and Fe content in the(Zn,Fe,Mg)O solid solution and the(Zn,Fe,Mg)(Fe,Al,Cr)2O4 spinel. Considering the stability of the(Zn,Fe,Mg)O solid solution layer and the penetration depth of the slag, the optimal funnel glass addition for lead smelting was found to be 20 wt%.
出处 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第12期1604-1616,共13页 矿物冶金与材料学报(英文版)
基金 financially supported by the National Key R&D Program of China (No. 2018YFC1902004) the National Natural Science Foundation of China (No. U1608254) the Project for Guangdong Collaborative Innovation and Platform Environment Building (No. 2017B090904035) the Special Project for Key Laboratory of Guangdong Science and Technology Department, China (No. 2017B030314046)
关键词 FUNNEL GLASS zinc-containing FAYALITE slag magnesia-chromite refractory corrosion funnel glass zinc-containing fayalite slag magnesia-chromite refractory corrosion
  • 相关文献

参考文献2

共引文献9

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部