期刊文献+

基于鉴别性低秩表示的2阶段人脸识别算法 被引量:2

A Two-phase Face Recognition Algorithm Based on Discriminative Low-rank Representation
下载PDF
导出
摘要 针对图像训练样本中存在噪声等情况,提出一种基于鉴别性低秩表示的2阶段人脸识别算法。该算法第1阶段是对所有训练样本进行低秩处理,筛选出M类与测试样本最相近的样本用于粗分类;第2阶段使用第1阶段筛选出来的样本做鉴别性低秩表示处理,并使用稀疏线性表示进行精细分类,决定测试样本最适合的类标签。本算法结合了低秩算法与稀疏算法的优点,在标准人脸库上的实验表明本算法表现优越。 A two-phase face recognition algorithm based on discriminative low-rank representation is proposed to deal with the noise in image training samples.In the first stage,all the training samples are processed by low-rank representation,and the M nearest neighbors of test sample are selected for rough classification.In the second stage,the samples screened in the first stage are used for discriminative low-rank representation,and sparse linear representation is used for fine classification,so as to determine the most suitable class labels for test samples.This algorithm combines the advantages of low-rank algorithm and sparse algorithm.The performance of this algorithm is proved by experiments on standard face database.
作者 崔娟娟 张蕾 侯谢炼 陈才扣 张海燕 CUI Juan-juan;ZHANG Lei;HOU Xie-lian;CHEN Cai-kou;ZHANG Hai-yan(Department of Mechanical and Electronic Engineering,Guangling College,Yangzhou University,Yangzhou 225000,China;School of Information Engineering,Yangzhou University,Yangzhou 225127,China)
出处 《计算机与现代化》 2019年第12期55-59,共5页 Computer and Modernization
基金 扬州大学广陵学院自然科学重点研究项目(ZKZD19001,ZKZD18002)
关键词 机器视觉 人脸识别 低秩表示 变换算法 machine vision face recognition low-rank representation transformation algorithm
  • 相关文献

参考文献2

二级参考文献40

  • 1李武军,王崇骏,张炜,陈世福.人脸识别研究综述[J].模式识别与人工智能,2006,19(1):58-66. 被引量:107
  • 2Aharon M, Elad M.Sparse and redundant modeling of image content using an image-signature-dictionary[J].SIAM Journal on Imaging Sciences, 2008,1(3):228-247.
  • 3Aharon M, Elad M, Bruckstein A.K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing, 2006,54(11):4311-4322.
  • 4Elad M.Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing[M].Springer, 2010.
  • 5Mairal J, Sapiro G, Elad M.Learning multiscale sparse representations for image and video restoration[J].SIAM Journal on Multiscale Modeling and Simulation, 2008,7(1):214-241.
  • 6Benoit L, Mairal J, Bach F, et al.Sparse image representation with epitomes[C]// Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition.2011:2913-2920.
  • 7Mailhe B, Lesage S, Gribonval R, et al.Shift-invariant dictionary learning for sparse representations: Extending K-SVD[C]// Proceedings of the 16th European Signal Processing Conference.2008.
  • 8Thiagarajan J J, Ramamurthy K N, Spanias A.Shift-invariant sparse representation of images using learned dictionaries[C]// Proceedings of the 2008 IEEE Workshop on Machine Learning for Signal Processing.2008:145-150.
  • 9Bertalmio M, Sapiro G, Caselles V, et al.Image inpainting[C]// Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques.2000:417-424.
  • 10Criminisi A, Perez P, Toyama K.Region filling and object removal by exemplar-based image inpainting[J].IEEE Transactions on Image Processing, 2004,13(9):1200-1212.

共引文献4

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部