摘要
针对图像训练样本中存在噪声等情况,提出一种基于鉴别性低秩表示的2阶段人脸识别算法。该算法第1阶段是对所有训练样本进行低秩处理,筛选出M类与测试样本最相近的样本用于粗分类;第2阶段使用第1阶段筛选出来的样本做鉴别性低秩表示处理,并使用稀疏线性表示进行精细分类,决定测试样本最适合的类标签。本算法结合了低秩算法与稀疏算法的优点,在标准人脸库上的实验表明本算法表现优越。
A two-phase face recognition algorithm based on discriminative low-rank representation is proposed to deal with the noise in image training samples.In the first stage,all the training samples are processed by low-rank representation,and the M nearest neighbors of test sample are selected for rough classification.In the second stage,the samples screened in the first stage are used for discriminative low-rank representation,and sparse linear representation is used for fine classification,so as to determine the most suitable class labels for test samples.This algorithm combines the advantages of low-rank algorithm and sparse algorithm.The performance of this algorithm is proved by experiments on standard face database.
作者
崔娟娟
张蕾
侯谢炼
陈才扣
张海燕
CUI Juan-juan;ZHANG Lei;HOU Xie-lian;CHEN Cai-kou;ZHANG Hai-yan(Department of Mechanical and Electronic Engineering,Guangling College,Yangzhou University,Yangzhou 225000,China;School of Information Engineering,Yangzhou University,Yangzhou 225127,China)
出处
《计算机与现代化》
2019年第12期55-59,共5页
Computer and Modernization
基金
扬州大学广陵学院自然科学重点研究项目(ZKZD19001,ZKZD18002)
关键词
机器视觉
人脸识别
低秩表示
变换算法
machine vision
face recognition
low-rank representation
transformation algorithm